113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Parameter estimation and control of a fuel cell air supply system based on an improved extended state observer

ORCID Icon, , &
Pages 362-378 | Received 15 Aug 2023, Accepted 10 Nov 2023, Published online: 27 Nov 2023

References

  • Baroud, Z., M. Benmiloud, A. Benalia, and C. Ocampo-Martinez. 2017. Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems. International Journal of Hydrogen Energy 42 (15):10435–47. doi:10.1016/j.ijhydene.2017.01.014.
  • Chatrattanawet, N., T. Hakhen, S. Kheawhom, and A. Arpornwichanop. 2017. Control structure design and robust model predictive control for controlling a proton exchange membrane fuel cell. Journal of Cleaner Production 148:934–47. doi:10.1016/j.jclepro.2017.02.033.
  • Chen, J., Z. Liu, F. Wang, Q. Ouyang, and H. Su. 2018. Optimal oxygen excess ratio control for PEM fuel cells. IEEE Transactions on Control Systems Technology 26 (5):1711–21. doi:10.1109/TCST.2017.2723343.
  • Damour, C., M. Benne, C. Lebreton, J. Deseure, and B. Grondin-Perez. 2014. Real-time implementation of a neural model-based self-tuning PID strategy for oxygen stoichiometry control in PEM fuel cell. International Journal of Hydrogen Energy 39 (24):12819–25. doi:10.1016/j.ijhydene.2014.06.039.
  • Deng, H., Q. Li, W. Chen, and G. Zhang. 2018. High-order sliding mode observer based OER control for PEM fuel cell air-feed system. IEEE Transactions on Energy Conversion 33 (1):232–44. doi:10.1109/TEC.2017.2742144.
  • Gruber, J. K., C. Bordons, and F. Dorado. 2008. Nonlinear control of the air feed of a fuel cell. American Control Conference, Seattle, WA, USA, 1121–26. doi:10.1109/ACC.2008.4586643.
  • He, W., B. Huang, Y. Dong, Z. Li, and C. Y. Su. 2018. Adaptive neural network control for robotic manipulators with unknown deadzone. IEEE Transactions on Cybernetics 48 (9):2670–82. doi:10.1109/TCYB.2017.2748418.
  • Hu, H., K. Ou, and W. Yuan. 2023. Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system. Energy 284:128459. doi:10.1016/j.energy.2023.128459.
  • Liu, J., Y. Gao, X. Su, M. Wack, and L. Wu. 2019. Disturbance-observer-based control for air Management of PEM fuel cell Systems via sliding mode technique. IEEE Transactions on Control Systems Technology 27 (3):1129–38. doi:10.1109/TCST.2018.2802467.
  • Liu, Z., L. Li, Y. Ding, H. Deng, and W. Chen. 2016. Modeling and control of an air supply system for a heavy duty PEMFC engine. International Journal of Hydrogen Energy 41 (36):16230–39. doi:10.1016/j.ijhydene.2016.04.213.
  • Liu, Y., S. Tong, and C. L. P. Chen. 2013. Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics. IEEE Transactions on Fuzzy Systems 21 (2):275–88. doi:10.1109/TFUZZ.2012.2212200.
  • Li, J., and T. Yu. 2021. Large-scale multi-agent deep reinforcement learning-based coordination strategy for energy optimization and control of proton exchange membrane fuel cell. Sustainable Energy Technologies and Assessments 48:101568. doi:10.1016/j.seta.2021.101568.
  • Li, J., T. Yu, and B. Yang. 2021. Coordinated control of gas supply system in PEMFC based on multi-agent deep reinforcement learning. International Journal of Hydrogen Energy 46 (68):33899–914. doi:10.1016/j.ijhydene.2021.07.009.
  • Mao, J., H. R. Karimi, and Z. Xiang. 2019. Observer-based adaptive consensus for a class of nonlinear multiagent systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems 49 (9):1893–900. doi:10.1109/TSMC.2017.2776219.
  • Marandi, S., N. Sarabchi, and M. Yari. 2021. Exergy and exergoeconomic comparison between multiple novel combined systems based on proton exchange membrane fuel cells integrated with organic Rankine cycles, and hydrogen boil-off gas subsystem. Energy Conversion and Management 244:114532. doi:10.1016/j.enconman.2021.114532.
  • Matraji, I., S. Laghrouche, S. Jemei, and M. Wack. 2013. Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Applied Energy 104:945–57. doi:10.1016/j.apenergy.2012.12.012.
  • Pukrushpan, J. T. 2003. Modeling and control of fuel cell systems and fuel processors. Ann Arbor, MI, USA: University of Michigan.
  • Pukrushpan, J. T., A. G. Stefanopoulou, and H. Peng. 2004. Control of fuel cell breathing. IEEE Control Systems Magazine 24 (2):30–46. doi:10.1109/MCS.2004.1275430.
  • Sankar, K., and A. Jana. 2018. Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated system. Energy Conversion and Management 171:541–65. doi:10.1016/j.enconman.2018.05.079.
  • Singh, S., V. K. Tayal, H. P. Singh, and V. K. Yadav. 2022. Design of PSO-tuned FOPI and Smith predictor controller for nonlinear polymer electrolyte membrane fuel cell, energy sources, part A: Recovery. Utilization, and Environmental Effects 1–22. doi:10.1080/15567036.2022.2025954.
  • Singh, S., V. K. Tayal, H. P. Singh, and V. K. Yadav. 2023. Dynamic performance improvement of proton exchange membrane fuel cell system by robust loop shaping and artificial intelligence optimized fractional order PI controllers. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 45 (3):9308–24. doi:10.1080/15567036.2023.2236081.
  • Sun, L., J. Shen, Q. Hua, and K. Lee. 2018. Data-driven oxygen excess ratio control for proton exchange membrane fuel cell. Applied Energy 231:866–75. doi:10.1016/j.apenergy.2018.09.036.
  • Teng, Q., G. Li, J. Zhu, and Y. Guo. 2016. Sensorless active disturbance rejection model predictive torque control using extended state observer for permanent magnet synchronous motors fed by three-phase four-switch inverter. Control Theory and Applications 33 (5):676–84. doi:10.7641/CTA.2016.50808.
  • Wang, Y., and Y. Wang. 2023. Pressure and oxygen excess ratio control of PEMFC air management system based on neural network and prescribed performance. Engineering Applications of Artificial Intelligence 121:105850. doi:10.1016/j.engappai.2023.105850.
  • Wang, Y., Y. Wang, J. Xu, and T. Chai. 2021. Observer-based discrete adaptive neural network control for Automotive PEMFC air-feed subsystem. IEEE Transactions on Vehicular Technology 70 (4):3149–63. doi:10.1109/TVT.2021.3064604.
  • Xie, R., R. Ma, S. Pu, L. Xu, D. Zhao, and Y. Huangfu. 2020. Prognostic for fuel cell based on particle filter and recurrent neural network fusion structure. Energy and AI 2:100017. doi:10.1016/j.egyai.2020.100017.
  • Yan, X., M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, and B. Yi. 2007. AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes. International Journal of Hydrogen Energy 32 (17):4358–64. doi:10.1016/j.ijhydene.2007.06.024.
  • Yasser, D., F. Auger, E. Schaeffer, S. Chevalier, and A. Allahham. 2022. Real-time estimation of PEMFC parameters using a continuous-discrete extended Kalman filter derived from a pseudo two-dimensional model. Energies 15 (7):2337. doi:10.3390/en15072337.
  • Yuan, H., H. Dai, X. Wei, and P. Ming. 2020. A novel model-based internal state observer of a fuel cell system for electric vehicles using improved Kalman filter approach. Applied Energy 268:115009. doi:10.1016/j.apenergy.2020.115009.
  • Yue, H., H. He, M. Han, and S. Gong. 2024. Active disturbance rejection control strategy for PEMFC oxygen excess ratio based on adaptive internal state estimation using unscented Kalman filter. Fuel 356:129619. doi:10.1016/j.fuel.2023.129619.
  • Zakaria, B., G. Noureddine, B. Atallah, and O. M. Carlos. 2018. Algebraic observer-based output-feedback controller design for a pem fuel cell air-supply subsystem. IET Renewable Power Generation 14 (12):1714–21. doi:10.1049/iet-rpg.2018.5421.
  • Zhao, Z., and B. Guo. 2018. A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty. IEEE Transactions on Automatic Control 63 (1):211–18. doi:10.1109/TAC.2017.2720419.
  • Zhao, D., Y. Huangfu, M. Dou, and F. Gao. 2014. Cathode partial pressures estimation of a proton exchange membrane fuel cell for transportation applications. IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 1–5. doi:10.1109/ITEC-AP.2014.6940805.
  • Zheng, Q., Z. Chen, and Z. Gao. 2009. A practical approach to disturbance decoupling control. Control Engineering Practice 17 (9):1016–25. doi:10.1016/j.conengprac.2009.03.005.
  • Zhu, Y., J. Zou, S. Li, and C. Peng. 2022. An adaptive sliding mode observer based near-optimal OER tracking control approach for PEMFC under dynamic operation condition. International Journal of Hydrogen Energy 47 (2):1157–71. doi:10.1016/j.ijhydene.2021.10.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.