80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluating the efficiency of the enhanced ultrasonic–assisted hydrogen peroxide degradation of low–rank coal biogenic gas

, , , &
Pages 160-170 | Received 09 Nov 2022, Accepted 10 Nov 2023, Published online: 21 Nov 2023

References

  • Chen, T., S. Rodrigues, S. D. Golding, and V. Rudolph. 2018. Improving coal bioavailability for biogenic methane production via hydrogen peroxide oxidation. International Journal of Coal Geology 195:402–14. doi:10.1016/j.coal.2018.06.011.
  • Dong, Z. W., H. Y. Guo, M. L. Zhang, D. Xia, P. Yin, X. J, and J. H. Lv. 2022. Enhancing biomethane yield of coal in anaerobic digestion using iron/copper nanoparticles synthesized from corn straw extract. Fuel 319:123664. doi:10.1016/j.fuel.2022.123664.
  • Guo, H. G., Y. T. Cheng, Z. X. Huang, A. Michael, L. Urynowicz, W. G, Z. Y. Han, and J. Liu. 2019. Factors affecting co-degradation of coal and straw to enhance biogenic coalbed methane. Fuel 244:240–46. doi:10.1016/j.fuel.2019.02.011.
  • Guo, H. G., X. F. Li, J. L. Zhang, Z. X. Huang, M. A. Urynowicz, W. G. Liang, and J. Wang. 2020. The effect of NaOH pretreatment on coal structure and biomethane production. PLoS One 15 (4):e0231623. doi:10.1371/journal.pone.0231623.
  • Guo, H. Y., S. W. Shi, G. F. Li, C. J. Ji, C. Y. Fu, Y. Shen, and X. L. Liu. 2022. Biodegradation of guar gum and its enhancing effect on biogas production from coal. Fuel 311:122606. doi:10.1016/j.fuel.2021.122606.
  • Haq, S. R., S. Tamamura, T. Igarashi, and K. Kaneko. 2018. Characterization of organic substances in lignite before and after hydrogen peroxide treatment: Implications for microbially enhanced coalbed methane. International Journal of Coal Geology 185:1–11. doi:10.1016/j.coal.2017.11.00.
  • Jian, K., G. Chen, C. Guo, G. S. Ma, and Z. L. Ru. 2019. Biogenic gas simulation of low–rank coal and its structure evolution. Journal of Petroleum Science and Engineering 173:1284–88. doi:10.1016/j.petrol.2018.11.005.
  • Jones, E. J. P., S. H. Harris, E. P. Barnhart, W. H. Orem, A. C. Clark, M. D. Corum, J. D. Kirshtein, M. S. Varonka, and M. A. Voytek. 2013. The effect of coal bed dewatering and partial oxidation on biogenic methane potential. International Journal of Coal Geology 115:54–63. doi:10.1016/j.coal.2013.03.011.
  • Lupton, N., L. D. Connell, D. Heryanto, R. Sander, M. Camilleri, D. I. Down, and Z. Pan. 2020. Enhancing biogenic methane generation in coalbed methane reservoirs–core flooding experiments on coals at in–situ conditions. International Journal of Coal Geology 219:103377. doi:10.1016/j.coal.2019.103377.
  • Ni, M. F., S. H. Jiang, and S. Y. Li. 2020. Spectroscopic indices trace spatiotemporal variability of dissolved organic matter in a river system with Karst characteristic. Canadian Journal of Fisheries and Aquatic Sciences 590:125570. doi:10.1016/j.jhydrol.2020.125570.
  • Ottoni, J. R., S. P. F. Bernal, T. J. Marteres, F. N. Luiz, V. P. D. Santos, Â. G. Mari, J. G. Somer, V. M. D. Oliveira, and M. R. Z. Passarini. 2022. Cultured and uncultured microbial community associated with biogas production in anaerobic digestion processes. Archives of Microbiology 204 (6):340. doi:10.1007/s00203-022-02819-8.
  • Park, S. Y., and Y. N. Liang. 2016. Biogenic methane production from coal: A review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel 166:258–67. doi:10.1016/j.fuel.2015.10.121.
  • Saravana, P. S., Y. N. Cho, M. P. Patil, Y. J. Cho, G. D. Kim, Y. B. Park, H. C. Woo, and B. C. Chun. 2018. Hydrothermal degradation of seaweed polysaccharide: Characterization and biological activities. Food Chemistry 268:179–87. doi:10.1016/j.foodchem.2018.06.077.
  • Scott, A. R. 1999. Improving coal gas recovery with microbially enhanced coalbed methane. Coalbed Methane: Scientific, Environmental and Economic Evaluation 89–110. doi:10.1007/978-94-017-1062-6_7.
  • Shao, Z. Z., B. Tan, B. Wan, T. Z. Li, X. Z. Song, and H. Y. Wang. 2023. Study on the change of key groups and gasproduction mechanism of different degrees of coal under thermal effect. Thermochimica Acta 725:179533. doi:10.1016/j.tca.2023.179533.
  • Su, S. N., W. L. Guo, C. L. Yi, Y. Q. Leng, and Z. M. Ma. 2012. Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation. Ultrasonics Sonochemistry 19 (3):469–74. doi:10.1016/j.ultsonch.2011.10.005.
  • Su, X. B., W. Z. Zhao, and D. P. Xia. 2018. The diversity of hydrogen–producing bacteria and methanogens within an in situ coal seam. Biotechnology for Biofuels and Bioproducts 11 (1):245. doi:10.1186/s13068-018-1237-2.
  • Wang, W. D., D. H. Liu, Y. N. Tu, L. Z. Jin, and H. Wang. 2020. Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation. Fuel 278:118195. doi:10.1016/j.fuel.2020.118195.
  • Wang, A. K., P. Shao, F. J. Lan, and H. Jin. 2018. Organic chemicals in coal available to microbes to produce biogenic coalbed methane: A review of current knowledge. Journal of Nature Gas Science and Engineering 60:40–48. doi:10.1016/j.jngse.2018.09.025.
  • Wang, L. F., X. B. Sua, W. Z. Zhao, D. P. Xia, and Q. Wang. 2023. Enhancement of biomethane production from coal by supercritical CO2 extraction. Journal of CO2 Utilization 74:102545. doi:10.1016/j.jcou.2023.102545.
  • Wang, B. Y., C. Tai, L. Wu, L. Y. Chen, J. M. Liu, B. Hu, and D. Y. Song. 2017. Methane production from lignite through the combined effects of exogenous aerobic and anaerobic microflora. International Journal of Coal Geology 173:84–93. doi:10.1016/j.coal.2017.02.012.
  • Wu, L., H. Z. Li, B. Cao, T. Q. Zhao, and Z. H. Wang. 2021. Study on gas characterization and fluorescence characteristics of intermediates in biogenic gas production from lignite by ultrasound assisted hydrogen peroxide pretreatment. Arabian Journal of Geosciences 14 (4):2962021. doi:10.1007/s12517-021-06676-5.
  • Xu, X. J., W. M. Liu, S. H. Tian, W. Wang, Q. Qi, P. Jiang, X. M. Gao, F. J. Li, H. Y. Li, and H. W. Yu. 2018. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Frontiers in Microbiology 9:2885. doi:10.3389/fmicb.2018.02885.
  • Yuan, H. P., and N. W. Zhu. 2016. Progress in inhibition mechanisms and process control of intermediates and by–products in sewage sludge anaerobic digestion. Renewable and Sustainable Energy Reviews 58:429–38. doi:10.1016/j.rser.2015.12.261.
  • Zhang, Y. Q., T. H. Chen, Y. L. Zhao, D. Chen, Y. F. Zhou, and H. B. Liu. 2019. Catalytic effect of siderite on H2O2 oxidation of carmine dye: Performance, mechanism and kinetics. Applied Geochemistry 106:26–33. doi:10.1016/j.apgeochem.2019.04.022.
  • Zhang, J., S. Y. Park, Y. Liang, and S. Harpalani. 2016. Finding cost–effective nutrient solutions and evaluating environmental conditions for biogasifying bituminous coal to methane ex situ. Applied Energy 165:559–68. doi:10.1016/j.apenergy.2015.12.067.
  • Zhao, Y., Y. J. Meng, K. J. Li, S. J. Zhao, and H. J. Ma. 2023. Micropore structure changes in response to H2O2 treatment of coals with different ranks: Implications for oxidant stimulation enhancing CBM recovery. Natural Resources Research 32 (5):2159–77. doi:10.1007/s11053-023-10228-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.