72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Solution gas-oil ratio estimation using histogram gradient boosting regression, machine learning, and mathematical models: a comparative analysis

ORCID Icon
Pages 379-396 | Received 01 Oct 2023, Accepted 12 Nov 2023, Published online: 29 Nov 2023

References

  • Abd Elaziz, M., A. A. Ewees, and Z. Alameer. 2020. Improving adaptive neuro-fuzzy inference system based on a modified salp swarm algorithm using genetic algorithm to forecast crude oil price. Natural Resources Research 29 (4):2671–86. doi:10.1007/s11053-019-09587-1.
  • Ahmadi, M. A., Zendehboudi, S., James, L.A., Elkamel, A., Dusseault, M., Chatzis, I., and Lohi, A. 2014. New tools to determine bubble point pressure of crude oils: Experimental and modeling study. Journal of Petroleum Science and Engineering 123:207–16. doi:10.1016/j.petrol.2014.08.018.
  • Al-Marhoun, M. A. 1988. PVT correlations for middle East crude oils. Journal of Petroleum Technology 40 (5):650–66. doi:10.2118/13718-PA.
  • Ayoub, M. A., Elhadi, A., Fatherlhman, D., Saleh, M. O., Alakbari, F. S., and Mohyaldinn, M. E. 2022. A new correlation for accurate prediction of oil formation volume factor at the bubble point pressure using group method of data handling approach. Journal of Petroleum Science and Engineering 208:109410. doi:10.1016/j.petrol.2021.109410.
  • Barjouei, H. S., H. Ghorbani, N. Mohamadian, D. A. Wood, S. Davoodi, J. Moghadasi, and H. Saberi. 2021. Prediction performance advantages of deep machine learning algorithms for two-phase flow rates through wellhead chokes. Journal of Petroleum Exploration and Production 11 (3):1233–61. doi:10.1007/s13202-021-01087-4.
  • Cheshmeh Sefidi, A., and F. Ajorkaran. 2019. A novel MLP-ANN approach to predict solution gas-oil ratio. Petroleum Science and Technology 37 (23):2302–08. doi:10.1080/10916466.2018.1490759.
  • De Ghetto, G., F. Paone, and M. Villa. 1994. Reliability analysis on PVT correlations. SPE Europec featured at EAGE Conference and Exhibition? London, United Kingdom. SPE.
  • Dindoruk, B., and P. G. Christman. 2004. PVT properties and viscosity correlations for Gulf of Mexico oils. SPE Reservoir Evaluation & Engineering 7 (6):427–37. doi:10.2118/89030-PA.
  • Dokla, M. E., and M. E. Osman. 1992. Correlation of PVT properties for UAE crudes. SPE formation evaluation. SPE Formation Evaluation 7 (1):41–46. doi:10.2118/20989-PA.
  • Dutta, S., and J. Gupta. 2010. PVT correlations for Indian crude using artificial neural networks. Journal of Petroleum Science and Engineering 72 (1–2):93–109. doi:10.1016/j.petrol.2010.03.007.
  • Elkatatny, S., and M. Mahmoud. 2018. Development of new correlations for the oil formation volume factor in oil reservoirs using artificial intelligent white box technique. Petroleum 4 (2):178–86. doi:10.1016/j.petlm.2017.09.009.
  • Elsharkawy, A. M. 2002. Predicting the dew point pressure for gas condensate reservoirs: empirical models and equations of state. Fluid phase equilibria. Fluid Phase Equilibria 193 (1–2):147–65. doi:10.1016/S0378-3812(01)00724-5.
  • Fath, A. H., F. Madanifar, and M. Abbasi. 2020. Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems. Petroleum 6 (1):80–91. doi:10.1016/j.petlm.2018.12.002.
  • Freund, Y., and R. E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 (1):119–39. doi:10.1006/jcss.1997.1504.
  • Ghorbani, H., D. A. Wood, A. Choubineh, N. Mohamadian, A. Tatar, H. Farhangian, and A. Nikooey. 2020. Performance comparison of bubble point pressure from oil PVT data: Several neurocomputing techniques compared. Experimental and Computational Multiphase Flow 2 (4):225–46. doi:10.1007/s42757-019-0047-5.
  • Ghorbani, H., Wood, D. A., Mohamadian, N., Rashidi, S., Davoodi, S., Soleimanian, A., Shahvand, A. K., and Mehrad, M. 2020. Adaptive neuro-fuzzy algorithm applied to predict and control multi-phase flow rates through wellhead chokes. Flow Measurement and Instrumentation 76:101849. doi:10.1016/j.flowmeasinst.2020.101849.
  • Glaso, O. 1980. Generalized pressure-volume-temperature correlations. Journal of Petroleum Technology 32 (5):785–95. doi:10.2118/8016-PA.
  • Hang, H., et al., Gradient boosted binary histogram ensemble for large-scale regression. arXiv preprint arXiv:2106.01986, 2021.
  • Jacobson, S. H., and E. Yücesan. 2004. Analyzing the performance of generalized hill climbing algorithms. Journal of Heuristics 10 (4):387–405. doi:10.1023/B:HEUR.0000034712.48917.a9.
  • Jang, J. S. R. 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23 (3):665–85. doi:10.1109/21.256541.
  • Macary, S., and M. El-Batanoney. 1993. Derivation of PVT correlations for the Gulf of Suez crude oils. Journal of the Japan Petroleum Institute 36 (6):472–78.
  • Mahmood, M. A., and M. A. Al-Marhoun. 1996. Evaluation of empirically derived PVT properties for Pakistani crude oils. Journal of Petroleum Science and Engineering 16 (4):275–90. doi:10.1016/S0920-4105(96)00042-3.
  • Mentaschi, L., Besio, G., Cassola, F., and Mazzino, A. 2013. Problems in RMSE-based wave model validations. Ocean Modelling 72:53–58. doi:10.1016/j.ocemod.2013.08.003.
  • Nabipour, N., and A. Baghban. 2023. Rigorous model for determination of PVT properties of crude oil in operational conditions. Energy sources, part A: Recovery. Utilization, and Environmental Effects 45 (3):8879–85. doi:10.1080/15567036.2019.1677823.
  • Najafzadeh, M., and S. Basirian. 2023. Evaluation of river water quality index using remote sensing and artificial intelligence models. Remote Sensing 15 (9):2359. doi:10.3390/rs15092359.
  • Najafzadeh, M., A. Etemad-Shahidi, and S. Y. Lim. 2016. Scour prediction in long contractions using ANFIS and SVM. Ocean Engineering 111:128–35. doi:10.1016/j.oceaneng.2015.10.053.
  • Najafzadeh, M., F. Homaei, and S. Mohamadi. 2022. Reliability evaluation of groundwater quality index using data-driven models. Environmental Science and Pollution Research 29 (6):8174–90. doi:10.1007/s11356-021-16158-6.
  • Nakhaei-Kohani, R., Taslimi-Renani, E., Hadavimoghaddam, F., Mohammadi, M. R., and Hemmati-Sarapardeh, A. 2022. Modeling solubility of CO2–N2 gas mixtures in aqueous electrolyte systems using artificial intelligence techniques and equations of state. Scientific Reports. 12(1):3625. doi:10.1038/s41598-022-07393-z.
  • Nazari, S., M. Najafzadeh, and R. Daghigh. 2022. Techno-economic estimation of a non-cover box solar still with thermoelectric and antiseptic nanofluid using machine learning models. Applied Thermal Engineering 212:118584. doi:10.1016/j.applthermaleng.2022.118584.
  • Neri, F., and C. Cotta. 2012. Memetic algorithms and memetic computing optimization: A literature review. Swarm and evolutionary Computation. Swarm and Evolutionary Computation 2:1–14. doi:10.1016/j.swevo.2011.11.003.
  • Nhat-Duc, H., and T. Van-Duc. 2023. Comparison of histogram-based gradient boosting classification machine, random forest, and deep convolutional neural network for pavement raveling severity classification. Automation in Construction 148:104767. doi:10.1016/j.autcon.2023.104767.
  • Obomanu, D. A., and Okpobiri, G. A. 1987. Correlating the PVT properties of Nigerian crudes. 109(4): 214–217. doi:10.1115/1.3231349.
  • Omar, M. and A. Todd. 1993. Development of new modified black oil correlations for Malaysian crudes. SPE Asia Pacific Oil and Gas Conference and Exhibition. Singapore. SPE.
  • Petrosky, G., Jr and F. Farshad. 1993. Pressure-volume-temperature correlations for Gulf of Mexico crude oils. SPE Annual Technical Conference and Exhibition? Houston, Texas. SPE doi:10.2118/26644-MS.
  • Sadeghi, G., M. Najafzadeh, and M. Ameri. 2020. Thermal characteristics of evacuated tube solar collectors with coil inside: An experimental study and evolutionary algorithms. Renewable Energy 151:575–88. doi:10.1016/j.renene.2019.11.050.
  • Sadeghi, G., Najafzadeh, M., Ameri, M., and Jowzi, M. 2022. A case study on copper-oxide nanofluid in a back pipe vacuum tube solar collector accompanied by data mining techniques. Case Studies in Thermal Engineering 32:101842. doi:10.1016/j.csite.2022.101842.
  • Sadeghi, G., M. Najafzadeh, and H. Safarzadeh. 2020. Utilizing gene-expression programming in modelling the thermal performance of evacuated tube solar collectors. Journal of Energy Storage 30:101546. doi:10.1016/j.est.2020.101546.
  • Sleiti, A. K., Al-Ammari, W. A., Abdelrazeq, M., El-Nass, M., Rahman, M. A., Barooah, A., Hasan, R., and Manikonda, K. 2021. Comprehensive assessment and evaluation of correlations for gas-oil ratio, oil formation volume factor, gas viscosity, and gas density utilized in gas kick detection. Journal of Petroleum Science and Engineering 207:109135. doi:10.1016/j.petrol.2021.109135.
  • Standing, M. 1947. A pressure-volume-temperature correlation for mixtures of California oils and gases. In Drilling and production practice, OnePetro.
  • Sugeno, M., and G. Kang. 1988. Structure identification of fuzzy model. fuzzy sets and systems. Fuzzy Sets and Systems 28 (1):15–33. doi:10.1016/0165-0114(88)90113-3.
  • Tamim Kashifi, M., and I. Ahmad. 2022. Efficient histogram-based gradient boosting approach for accident severity prediction with multisource data. Transportation research record. Transportation Research Record: Journal of the Transportation Research Board 2676 (6):236–58. doi:10.1177/03611981221074370.
  • Tasneem, S., H. S. Sultan, A. A. Ageeli, H. Togun, W. M. Alamier, N. Hasan, and M. R. Safaei. 2023. Machine learning modeling of reversible thermochemical reactions applicable in energy storage systems. Journal of the Taiwan Institute of Chemical Engineers 148:104926. doi:10.1016/j.jtice.2023.104926.
  • Taylor, K. E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres 106 (D7):7183–92. doi:10.1029/2000JD900719.
  • Taylor, K. E. 2005. Taylor diagram primer. work. Pap 1–4.
  • Tohidi-Hosseini, S.-M., Hajirezaie, S., Hashemi-Doulatabadi, M., Hemmati-Sarapardeh, A., and Mohammadi, A. H. 2016. Toward prediction of petroleum reservoir fluids properties: A rigorous model for estimation of solution gas-oil ratio. Journal of Natural Gas Science & Engineering 29:506–16. doi:10.1016/j.jngse.2016.01.010.
  • Valko, P., and W. McCain. 2003. Reservoir oil bubblepoint pressures revisited; solution gas–oil ratios and surface gas specific gravities. Journal of Petroleum Science & Engineering 37 (3–4):153–69. doi:10.1016/S0920-4105(02)00319-4.
  • Yang, X., B. Dindoruk, and L. Lu. 2020. A comparative analysis of bubble point pressure prediction using advanced machine learning algorithms and classical correlations. Journal of Petroleum Science and Engineering 185:106598. doi:10.1016/j.petrol.2019.106598.
  • Yavari, H., M. Fazaelizadeh, B. S. Aadnoy, R. Khosravanian, J. Qajar, M. Sedaghatzadeh, and M. Riazi. 2023. An approach for optimization of controllable drilling parameters for motorized bottom hole assembly in a specific formation. Results in Engineering 20:101548. doi:10.1016/j.rineng.2023.101548.
  • Yavari, H., Khosravanian, R., Wood, D. A., and Aadnoy, B. S. 2021. Application of mathematical and machine learning models to predict differential pressure of autonomous downhole inflow control devices. Advances in Geo-Energy Research. 5(4):386–406. doi:10.46690/ager.2021.04.05.
  • Yavari, H., Qajar, J., Aadnoy, B. S., and Khosravanian, R. 2023. Selection of optimal well trajectory using multi-objective genetic algorithm and TOPSIS method. Arabian Journal for Science and Engineering 1–25. doi:10.1007/s13369-023-08149-1.
  • Yavari, H., Sabah, M., Khosravanian, R., and Wood, D.A. 2018. Application of an adaptive neuro-fuzzy inference system and mathematical rate of penetration models to predicting drilling rate. Iranian Journal of Oil & Gas Science & Technology 7 (3):73–100.
  • Zamani, H. A., Rafiee-Taghanaki, S., Karimi, M., Arabloo, M., and Dadashi, A. 2015. Implementing ANFIS for prediction of reservoir oil solution gas-oil ratio. Journal of Natural Gas Science & Engineering 25:325–34. doi:10.1016/j.jngse.2015.04.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.