89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Wind turbine output power prediction by a segmented multivariate polynomial-XGBoost model

, &
Pages 505-521 | Received 28 Aug 2023, Accepted 12 Nov 2023, Published online: 27 Nov 2023

References

  • Ahn, E., and J. Hur. 2023. A short-term forecasting of wind power outputs using the enhanced wavelet transform and arimax techniques. Renewable Energy 212 (August):394–402. doi:10.1016/j.renene.2023.05.048.
  • Chen, T., and C. Guestrin. 2016. “Xgboost: A scalable tree boosting System.” In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–94. San Francisco California USA: ACM. doi:10.1145/2939672.2939785.
  • Chen, J., G.-Q. Zeng, W. Zhou, D. Wei, and K.-D. Lu. 2018. “Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization.” Energy Conversion and Management 165 (June): 681–95. doi:10.1016/j.enconman.2018.03.098.
  • Dong, L., L. Wang, S. Farhan Khahro, S. Gao, and X. Liao. 2016. Wind power day-ahead prediction with cluster analysis of NWP. Renewable and Sustainable Energy Reviews 60 (July):1206–12. doi:10.1016/j.rser.2016.01.106.
  • Duan, R., Y. Li, B. Qiang, and L. Zhou. 2021. “A feature selection-based XGBoost model for fault prediction.” In 2021 17th International Conference on Computational Intelligence and Security (CIS), 232–36. Chengdu, China: IEEE. doi:10.1109/CIS54983.2021.00056.
  • Guo, P., and L. Liu. 2018. “Modeling and monitoring of multivariable wind turbine power curve.” Power System Technology 42 (10): 3347–54. doi:10.13335/j.1000-3673.pst.2018.0457.
  • Huang, J., W. Niu, and X. Wang. 2022. Output power modeling of wind turbine based on state curve analysis. Current Chinese Engineering Science 2 (1):e061221198579. doi:10.2174/2665998002666211206104809.
  • International Electrotechnical Commission. IEC 61400-12-1, power performance measurements of electricity producing wind turbines. 2005. Geneva,Switzerland: International Electrotechnical Commission.
  • Jia, T.-S., and M.-Q. Li. 2022. “Design of variable gain auto disturbance rejection Controller for photoelectric stabilization platform.” In International symposium on artificial intelligence control and application technology (AICAT 2022), ed. W. Wei, Vol. 12305: 123050R. SPIE. doi:10.1117/12.2645691.
  • Jiang, T., and Y. Liu. 2023. A short-term wind power prediction approach based on ensemble empirical Mode decomposition and improved long short-term memory. Computers and Electrical Engineering 110 (September):108830. doi:10.1016/j.compeleceng.2023.108830.
  • Jung, J., and R. P. Broadwater. 2014. “Current status and future advances for wind speed and power forecasting.” Renewable and Sustainable Energy Reviews 31 (March): 762–77. doi:10.1016/j.rser.2013.12.054.
  • Kisvari, A., Z. Lin, and X. Liu. 2021. Wind power forecasting – a data-driven method along with gated recurrent neural network. Renewable Energy 163 (January):1895–909. doi:10.1016/j.renene.2020.10.119.
  • Li, C., S. Lin, F. Xu, D. Liu, and J. Liu. 2018. “Short-term wind power prediction based on data Mining Technology and improved support vector machine method: A case study in Northwest China.” Journal of Cleaner Production 205 (December): 909–22. doi:10.1016/j.jclepro.2018.09.143.
  • Lin, Z., X. Liu, and M. Collu. 2020. Wind power prediction based on high-frequency SCADA data along with isolation forest and deep learning neural networks. International Journal of Electrical Power & Energy Systems 118 (June):105835. doi:10.1016/j.ijepes.2020.105835.
  • Li, G., and J. Shi. 2010. “On comparing three Artificial neural networks for wind speed forecasting.” Applied Energy 87 (7): 2313–20. doi:10.1016/j.apenergy.2009.12.013.
  • Liu, X., Z. Lin, and Z. Feng. 2021. Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM. Energy 227 (July):120492. doi:10.1016/j.energy.2021.120492.
  • Liu, H., H.-Q. Tian, C. Chen, and L. Yan-Fei 2010. “A hybrid statistical method to predict wind speed and wind power.” Renewable Energy 35 (8): 1857–61. doi:10.1016/j.renene.2009.12.011.
  • Liu, H., H.-Q. Tian, and Y.-F. Li. 2015. “An EMD-Recursive ARIMA method to predict wind speed for railway strong wind warning System.” Journal of Wind Engineering and Industrial Aerodynamics 141 (June): 27–38. doi:10.1016/j.jweia.2015.02.004.
  • Li, N., Y. Wang, W. Ma, Z. Xiao, and A. Zhuoer 2022. “A wind power prediction method based on DE-BP neural network.” Frontiers in Energy Research 10 (February): 844111. doi:10.3389/fenrg.2022.844111.
  • Li., Y.-L., Z.-A. Zhu, Y.-K. Chang, and C.-K. Chiang. 2020. “Short-term wind power forecasting by Advanced machine learning models.” In Short-Term Wind Power Forecasting by Advanced Machine Learning Models, 412–15. Taichung City, Taiwan: IEEE. doi:10.1109/IS3C50286.2020.00112.
  • Lu, W., J. Duan, P. Wang, W. Ma, and S. Fang. 2023. “Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and maximum mixture correntropy long Short-term memory neural network.” International Journal of Electrical Power & Energy Systems 144 (January): 108552. doi:10.1016/j.ijepes.2022.108552.
  • Marčiukaitis, M., I. Žutautaitė, L. Martišauskas, B. Jokšas, G. Gecevičius, and A. Sfetsos. 2017. Non-linear regression model for wind turbine power curve. Renewable Energy 113 (December):732–41. doi:10.1016/j.renene.2017.06.039.
  • Nielson, J., K. Bhaganagar, R. Meka, and A. Alaeddini. 2020. Using atmospheric inputs for Artificial neural networks to improve wind turbine power prediction. Energy 190 (January):116273. doi:10.1016/j.energy.2019.116273.
  • Niu, W., J. Huang, H. Yang, and X. Wang. 2022. Wind turbine power prediction based on wind Energy utilization coefficient and multivariate polynomial regression. Journal of Renewable and Sustainable Energy 14 (1):013306. doi:10.1063/5.0074657.
  • Niu, W., H. Yang, J. Huang, X. Wang, and W. Gu 2021. “Forecast of wind turbine output power by a multivariate polynomial-RF model.” Journal of Renewable and Sustainable Energy 13 (5): 053306. doi:10.1063/5.0062091.
  • Pandit, R. K., and D. Infield. 2018. SCADA‐based wind turbine anomaly detection using gaussian process models for wind turbine condition monitoring purposes. IET Renewable Power Generation 12 (11):1249–55. doi:10.1049/iet-rpg.2018.0156.
  • Rodríguez-López, M. Á., E. Cerdá, and P. Del Rio. 2020. Modeling wind-turbine power curves: Effects of environmental temperature on wind Energy generation. Energies 13 (18):4941. doi:10.3390/en13184941.
  • Wang, X., W. Niu, and W. Gu. 2021. “Applied Systems theory: Wind turbine output power prediction based on wind Energy utilization coefficient.” International Journal of Circuits, Systems and Signal Processing 15 (April): 356–66. doi:10.46300/9106.2021.15.39.
  • Wang, J., S. Wang, and W. Yang. 2019. A novel non-linear combination system for short-term wind speed forecast. Renewable Energy 143 (December):1172–92. doi:10.1016/j.renene.2019.04.154.
  • Yang, M., Y. Guo, and Y. Huang. 2023. Wind power ultra-Short-term prediction method based on NWP wind speed correction and Double clustering division of transitional weather process. Energy 282 (November):128947. doi:10.1016/j.energy.2023.128947.
  • Yang, Q., G. Huang, T. Li, Y. Xu, and J. Pan. 2023. “A novel Short-term wind speed prediction method based on hybrid Statistical-Artificial Intelligence model with empirical wavelet transform and hyperparameter optimization.” Journal of Wind Engineering and Industrial Aerodynamics 240 (September): 105499. doi:10.1016/j.jweia.2023.105499.
  • Yang, H., W. Niu, X. Wang, and W. Gu. 2023. “Wind turbine output power forecasting based on Temporal Convolutional neural network and complete ensemble empirical mode decomposition with adaptive noise.” International Journal of Green Energy, January, 1612–27. doi:10.1080/15435075.2023.2169577.
  • Yang, Z., X. Peng, J. Song, R. Duan, Y. Jiang, and S. Liu. 2023. “Short-term wind power prediction based on multi-parameters similarity wind process matching and weighed-voting-based deep learning model selection.” IEEE Transactions on Power Systems, 1–13. doi:10.1109/TPWRS.2023.3257368.
  • Zhang, J., J. Yan, D. Infield, Y. Liu, and F.-S. Lien. 2019. Short-term forecasting and uncertainty analysis of wind turbine power based on long Short-term memory network and gaussian mixture model. Applied Energy 241 (May):229–44. doi:10.1016/j.apenergy.2019.03.044.
  • Zhao, X., B. Sun, and R. Geng. 2023. A new distributed decomposition–reconstruction–ensemble learning paradigm for short-term wind power prediction. Journal of Cleaner Production 423 (October):138676. doi:10.1016/j.jclepro.2023.138676.
  • Zhao, Z., S. Yun, L. Jia, J. Guo, Y. Meng, N. He, X. Li, J. Shi, and L. Yang. 2023. “Hybrid VMD-CNN-GRU-based model for Short-term forecasting of wind power considering spatio-temporal features.” Engineering Applications of Artificial Intelligence 121 (May): 105982. doi:10.1016/j.engappai.2023.105982.
  • Zheng, H., Z. Hu, X. Wang, J. Ni, and M. Cui. 2023. “VMD-CAT: A hybrid model for Short-term wind power prediction.” Energy Reports. doi: 10.1016/j.egyr.2023.02.061
  • Zheng, H., and Y. Wu 2019. “A XGBoost model with weather similarity analysis and feature Engineering for Short-term wind power forecasting.” Applied Sciences 9 (15): 3019. doi:10.3390/app9153019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.