53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The temperature effect and system equilibrium of preparing powdered activated coke sorbent in a rapid carbonization-activation two-step process

, , , , , , , & show all
Pages 839-853 | Received 01 Jun 2023, Accepted 14 Nov 2023, Published online: 26 Dec 2023

References

  • Altıntıg, E., S. Balta, M. Balta, and Z. Aydemır. 2022. Methylene blue removal with ZnO coated montmorillonite: Thermodynamic, kinetic, isotherm and artificial intelligence studies. International Journal of Phytoremediation 24 (8):867–880. doi:10.1080/15226514.2021.1984386.
  • Altintig, E., B. Sarıcı, and S. Karataş. 2022. Prepared activated carbon from hazelnut shell where coated nanocomposite with Ag+ used for antibacterial and adsorption properties. Environmental Science & Pollution Research 30 (5):13671–13687. doi:10.1007/s11356-022-23004-w.
  • Authier, O., E. Thunin, P. Plion, C. Schönnenbeck, G. Leyssens, J. Brilhac, and L. Porcheron. 2014. Kinetic study of pulverized coal devolatilization for boiler CFD modeling. Fuel 122:254–260. doi:10.1016/j.fuel.2014.01.026.
  • Cândido, N. R., M. J. Prauchner, A. D. O. Vilela, and V. M. D. Pasa. 2020. The use of gases generated from eucalyptus carbonization as activating agent to produce activated carbon: An integrated process. Journal of Environmental Chemical Engineering 8 (4):103925. doi:10.1016/j.jece.2020.103925.
  • Ebrahimzadeh, E., and A. Shahsavand. 2014. Simulation of Environmental Pollution Due to SO2 Dispersion. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 36 (19):2095–2105. doi:10.1080/15567036.2011.559525.
  • Fu, J., B. Zhou, Z. Zhang, T. Wang, X. Cheng, L. Lin, and C. Ma. 2020. One-step rapid pyrolysis activation method to prepare nanostructured activated coke powder. Fuel 262:116514. doi:10.1016/j.fuel.2019.116514.
  • Li, J., J. Chang, S. Cheng, Z. Wang, Y. Zhao, B. Zhou, C. Ma, L. Zhang, T. Wang, and Z. Song. 2023. New insights into the influence of SO2 as an activator on the physicochemical properties of carbon materials and the influence of S-doping on SO2 adsorption: Experimental and density functional theory study. Chem Eng J 474:145902. doi:10.1016/j.cej.2023.145902.
  • Li, H., R. Guo, Y. Chen, G. Yang, and T. Wu. 2022. Utilization of steel slag as a highly efficient absorbent for SO2 removal at coal-fired power stations. Environmental Advances 9:100276. doi:10.1016/j.envadv.2022.100276.
  • Li, X., J. Han, Y. Liu, Z. Dou, and T. Zhang. 2022. Summary of research progress on industrial flue gas desulfurization technology. Separation and Purification Technology 281:119849. doi:10.1016/j.seppur.2021.119849.
  • Li, J., N. Kobayashi, and Y. Hu. 2008. The activated coke preparation for SO2 adsorption by using flue gas from coal power plant. Chemical Engineering and Processing: Process Intensification 47 (1):118–127. doi:10.1016/j.cep.2007.08.001.
  • Li, Y., Y. Lin, B. Wang, S. Ding, F. Qi, and T. Zhu. 2019. Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification. Journal of Cleaner Production 228:1391–1400. doi:10.1016/j.jclepro.2019.04.225.
  • Lim, J., H. Cho, and J. Kim. 2021. Optimization of wet flue gas desulfurization system using recycled waste oyster shell as high-grade limestone substitutes. Journal of Cleaner Production 318:128492. doi:10.1016/j.jclepro.2021.128492.
  • Liu, Q., J. S. Guan, J. Li, and C. Li. 2003. SO2 removal from flue gas by activated semi-cokes: 2. Effects of physical structures and chemical properties on SO2 removal activity. CARBON 41 (12):2225–2230. doi:10.1016/S0008-6223(03)00230-6.
  • Li, J., B. Zhou, J. Chang, Q. Tian, C. Ma, L. Zhang, T. Wang, S. Chen, G. Chen, and Z. Song. 2023. Study on thermal regeneration of saturated activated coke coupled with SO2 carbothermal reduction to produce elemental sulfur. Energy 278:127909. doi:10.1016/j.energy.2023.127909.
  • López, D., R. Buitrago, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, and F. Mondragón. 2006. Surface complexes formed during simultaneous catalytic adsorption of NO and SO2 on activated carbons at low temperatures. The Journal of Physical Chemistry C 111 (3):1417–1423. doi:10.1021/jp063544h.
  • Muttakin, M., S. Mitra, K. Thu, K. Ito, and B. B. Saha. 2018. Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms. International Journal of Heat & Mass Transfer 122:795–805. doi:10.1016/j.ijheatmasstransfer.2018.01.107.
  • Nabais, J. M. V., C. E. C. Laginhas, P. J. M. Carrott, and M. M. L. Ribeiro Carrott. 2011. Production of activated carbons from almond shell. Fuel Processing Technology 92 (2):234–240. doi:10.1016/j.fuproc.2010.03.024.
  • Niu, J., H. Zhang, L. Li, and Y. Guo. 2021. Cost-effective activated carbon (AC) production from partial substitution of coal with red mud (RM) as additive for SO2 and NOx abatement at low temperature. Fuel 293:120448. doi:10.1016/j.fuel.2021.120448.
  • Pi, X., F. Sun, J. Gao, A. Wang, Z. Qie, L. Wang, H. Liu, and H. Liu. 2019. A new insight into the SO2 adsorption behavior of oxidized carbon materials using model adsorbents and DFT calculations. Physical Chemistry Chemical Physics: PCCP 21 (18):9181–9188. doi:10.1039/C8CP07782G.
  • Pi, X., F. Sun, J. Gao, Y. Zhu, L. Wang, Z. Qu, H. Liu, and G. Zhao. 2017. Microwave irradiation induced high-efficiency regeneration for desulfurized activated coke: A comparative study with conventional thermal regeneration. Energ Fuel 31 (9):9693–9702. doi:10.1021/acs.energyfuels.7b01260.
  • Rashidi, N. A., and S. Yusup. 2017. A review on recent technological advancement in the activated carbon production from oil palm wastes. Chem Eng J 314:277–290. doi:10.1016/j.cej.2016.11.059.
  • Rosas, J. M., R. Ruiz-Rosas, J. Rodríguez-Mirasol, and T. Cordero. 2017. Kinetic study of SO2 removal over lignin-based activated carbon. Chem Eng J 307:707–721. doi:10.1016/j.cej.2016.08.111.
  • Rudra Paul, T., H. Nath, V. Chauhan, A. Sahoo. 2021. Gasification studies of high ash Indian coals using Aspen plus simulation. Materials Today: Proceedings 46:6149–6155. doi:10.1016/j.matpr.2020.04.033.
  • SHANGGUAN, J., C. LI, M. MIAO, and Z. YANG. 2008. Surface characterization and SO2 removal activity of activated semi-coke with heat treatment. New Carbon Materials 23 (1):37–43. doi:10.1016/S1872-5805(08)60011-6.
  • Sun, F., J. Gao, X. Liu, X. Tang, and S. Wu. 2015. A systematic investigation of SO2removal dynamics by coal-based activated cokes: The synergic enhancement effect of hierarchical pore configuration and gas components. Appl Surf Sci 357, 1895–1901. doi:10.1016/j.apsusc.2015.09.118.
  • Vikram, S., P. Rosha, S. Kumar, and S. Mahajani. 2022. Thermodynamic analysis and parametric optimization of steam-CO2 based biomass gasification system using Aspen PLUS. Energy 241:122854. doi:10.1016/j.energy.2021.122854.
  • Wang, T., B. Zhou, C. Li, T. Xu, J. Fu, C. Ma, and Z. Song. 2021. Preparation of powdered activated coke for SO2 removal using different coals through a one-step method under high-temperature flue gas atmosphere. Journal of Analytical and Applied Pyrolysis 153:104989. doi:10.1016/j.jaap.2020.104989.
  • Yang, L., Z. Yuwen, G. Jihui, S. Fei, and L. Ming. 2015. Activated coke pore structure evolution and its influence on desulfuration. CIESC Journal 66 (3) :1126–1132. doi:10.11949/j.issn.0438-1157.20141219.
  • Zhang, K., Y. He, Z. Wang, T. Huang, Q. Li, S. Kumar, and K. Cen. 2017. Multi-stage semi-coke activation for the removal of SO2 and NO. Fuel 210:738–747. doi:10.1016/j.fuel.2017.08.107.
  • Zhang, H., C. Li, J. Niu, Y. Guo, and F. Cheng. 2023. Improving SO2 and/or NO removal by activated carbon through comprehensive utilization of inherent pyrite and calcite in coal. Fuel 338:127195. doi:10.1016/j.fuel.2022.127195.
  • Zhang, Z., T. Wang, L. Ke, X. Zhao, and C. Ma. 2016. Powder-activated semicokes prepared from coal fast Pyrolysis: Influence of oxygen and steam atmosphere on pore structure. Energ Fuel 30 (2):896–903. doi:10.1021/acs.energyfuels.5b02488.
  • Zhibin, Q., S. Fei, P. Xinxin, Q. Zhipeng, and G. Jihui. 2020. Research progress of carbon materials on sulfur removal and resource utilization from coal-fired flue gas. Clean Coal Technology 26 (1):151–163.
  • Zhou, B., T. Wang, T. Xu, C. Li, J. Li, J. Fu, Z. Zhang, Z. Song, and C. Ma. 2021. Comparative study on the preparation of powdered activated coke for SO2 adsorption: One-step and two-step rapid activation methods. Fuel 288:119570. doi:10.1016/j.fuel.2020.119570.
  • Zhou, B., T. Wang, T. Xu, C. Li, Y. Zhao, J. Fu, Z. Zhang, Z. Song, and C. Ma. 2021. Optimization of process parameters for preparation of powdered activated coke to achieve maximum SO2 adsorption using response surface methodology. Frontiers in Energy 15 (1):159–169. doi:10.1007/s11708-020-0719-7.
  • Zhou, Y., S. Zhu, L. Yan, F. Li, and Y. Bai. 2019. Interaction between CO2 and H2O on char structure evolution during coal char gasification. Appl Therm Eng 149: 298–305.
  • Zhu, Y., J. Gao, Y. Li, F. Sun, J. Gao, S. Wu, and Y. Qin. 2011. Preparation of activated carbons for SO2 adsorption by CO2 and steam activation. J Taiwan Inst Chem E 43 (1) :112–119. doi:10.1016/j.jtice.2011.06.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.