173
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Combustion performance of a domestic cooker burner at different design parameters and fuels

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 409-423 | Received 12 May 2023, Accepted 13 Nov 2023, Published online: 27 Nov 2023

References

  • Abdelwahab, T. A. M., M. K. Mohanty, P. K. Sahoo, and D. Behera. Application of nanoparticles for biogas production: Current status and perspectives. Energy Sources A: Recovery Util Environ Eff 2020:1–13. doi:10.1080/15567036.2020.1767730.
  • Ansys. Ansys Fluent 17.2. Inc Northbrook IL 2017. 10.1016/0140-3664(87)90311-2.
  • Askari, M. H., M. Ashjaee, and S. Karaminejad. 2017. Experimental and numerical investigation of the laminar burning velocity and combustion characteristics of biogas at high pressures. Energy and Fuels 31 (12):14169–79. doi:10.1021/acs.energyfuels.7b02320.
  • Boggavarapu, P., B. Ray, and R. V. Ravikrishna. 2014. Thermal efficiency of LPG and PNG-fired burners: Experimental and numerical studies. Fuel 116:709–15. doi:10.1016/j.fuel.2013.08.054.
  • Choudhury, D. 1993. Introduction to the renormalization group method and turbulence modeling. In Technical memorandum no 107, 70. Lebanon, NH: Fluent Inc.
  • de Vries, H., A. V. Mokhov, and H. B. Levinsky. 2017. The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: Interchangeability analysis for domestic appliances. Applied Energy 208:1007–19. doi:10.1016/J.APENERGY.2017.09.049.
  • Hognert, J., and L. Nilsson. 2016. The small-scale production of hydrogen, with the co-production of electricity and district heat, by means of the gasification of municipal solid waste. Applied Thermal Engineering 106:174–79. doi:10.1016/J.APPLTHERMALENG.2016.05.185.
  • Jahangirian, S., A. Engeda, and I. S. Wichman. 2009. Thermal and chemical structure of biogas counterflow diffusion flames. Energy & Fuels 23:5312–21. doi:10.1021/ef9002044.
  • Jones, D. R., W. A. Al-Masry, and C. W. Dunnill. 2018. Hydrogen-enriched natural gas as a domestic fuel: An analysis based on flash-back and blow-off limits for domestic natural gas appliances within the UK. Sustain Energy Fuels 2:710–23. doi:10.1039/C7SE00598A.
  • Kakaç, S., A. Pramuanjaroenkij, and X. Y. Zhou. 2007. A review of numerical modeling of solid oxide fuel cells. International Journal of Hydrogen Energy 32 (7):761–86. doi:10.1016/j.ijhydene.2006.11.028.
  • Kermes, V., P. Be˘lohradský, J. Oral, and P. Stehlík. 2008. Testing of gas and liquid fuel burners for power and process industries. Energy 33:1551–61. doi:10.1016/J.ENERGY.2008.07.013.
  • Kocar, G., and A. Eryasar. 2007. An application of solar energy storage in the gas: Solar heated biogas plants. Energy Sources A: Recovery Util Environ Eff 29:1513–20. doi:10.1080/00908310600626598.
  • Kotb, A., and H. Saad. 2018. Case study for co and counter swirling domestic burners. Case Stud Therm Eng 11:98–104. doi:10.1016/J.CSITE.2018.01.004.
  • Li, Y., Z. Dai, Y. Dong, J. Xu, Q. Guo, and F. Wang. 2016. Equilibrium prediction of acid gas partial oxidation with presence of CH4 and CO2 for hydrogen production. Applied Thermal Engineering 107:125–34. doi:10.1016/J.APPLTHERMALENG.2016.05.076.
  • McBride, B. J., S. Gordon, and M. A. Reno. 1993. Coefficients for calculating thermodynamic and transport properties of individual species.
  • Naskeo Environnement. 2009. Biogas composition. Biogas 1.
  • Shen, G., W. Preston, S. M. Ebersviller, C. Williams, J. W. Faircloth, J. J. Jetter, and M. D. Hays. 2017. Polycyclic aromatic hydrocarbons in fine particulate matter emitted from burning kerosene, Liquid Petroleum gas, and wood fuels in household cookstoves. Energy and Fuels 31 (3):3081–90. doi:10.1021/acs.energyfuels.6b02641.
  • Shih, T.-H., W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. 1995. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids 24:227–38. doi:10.1016/0045-7930(94)00032-T.
  • Singh, A., P. S. Nigam, and J. D. Murphy. 2011. Renewable fuels from algae: An answer to debatable land based fuels. Bioresource Technology 102:10–16. doi:10.1016/J.BIORTECH.2010.06.032.
  • Sun, M., X. Huang, Y. Hu, and S. Lyu. 2022. Effects on the performance of domestic gas appliances operated on natural gas mixed with hydrogen. Energy 244:122557. doi:10.1016/J.ENERGY.2021.122557.
  • Tannehill, J., D. A. Anderson, and R. H. Pletcher. 2013. Computational fluid mechanics and heat transfer. Vol. 172. 3rd ed. doi:10.1017/S0022112086211878.
  • Turns, S. R. 2012. An introduction to combustion: Concepts and applications. US: McGraw-Hill.
  • Versteeg, H. K., K. Henk, and W. Malalasekera. 2007. An introduction to computational fluid dynamics: The finite volume method. England: Pearson Education Ltd.
  • Vrbová, V., and K. Ciahotný. 2017. Upgrading biogas to biomethane using membrane separation. Energy & Fuels 31:9393–401. doi:10.1021/acs.energyfuels.7b00120.
  • Zhao, Y., V. McDonell, and S. Samuelsen. 2019. Experimental assessment of the combustion performance of an oven burner operated on pipeline natural gas mixed with hydrogen. International Journal of Hydrogen Energy 44:26049–62. doi:10.1016/J.IJHYDENE.2019.08.011.
  • Zhen, H. S., C. W. Leung, and T. T. Wong. 2014. Improvement of domestic cooking flames by utilizing swirling flows. Fuel 119:153–56. doi:10.1016/J.FUEL.2013.11.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.