87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evolution characteristics of pore structure of coal under freeze-thaw cycles combined with scanning electron microscope instrument and nitrogen adsorption experiment

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 424-438 | Received 06 Jun 2023, Accepted 14 Nov 2023, Published online: 27 Nov 2023

References

  • Chen, M. Y., X. Y. Chen, L. Wang, F. H. Tian, Y. M. Yang, X. J. Zhang, and Y. P. Yang. 2022. Water adsorption characteristic and its impact on pore structure and methane adsorption of various rank coals. Environmental Science and Pollution Research 29 (20):29870–86. doi:10.1007/s11356-021-17802-x.
  • Davoodi, S., M. Al-Shargabi, D. A. Wood, and V. S. Rukavishnikov. 2023. A comprehensive review of beneficial applications of viscoelastic surfactants in wellbore hydraulic fracturing fluids. Fuel 338:127228. doi:10.1016/j.fuel.2022.127228.
  • Du, Y. H., S. Lu, J. Y. Xu, W. Xia, T. J. Wang, and Z. H. Wang. 2022. Experimental study of impact mechanical and microstructural properties of modified carbon fiber reinforced concrete. Scientific Reports 12 (1):12928. doi:10.1038/s41598-022-17092-4.
  • Huang, L. S., B. Li, B. Wang, B. Wu, and J. X. Zhang. 2023. Study on mechanical properties and energy evolution of coal under liquid nitrogen freezing. Engineering Fracture Mechanics 282:109158. doi:10.1016/j.engfracmech.2023.109158.
  • Jiang, Z. B., X. Peng, S. Y. Wei, B. B. Li, and C. Deng. 2022. Effect of CO2 cracking on coal pores based on nitrogen adsorption and mercury injection tests. Journal of Environment and Safety 21 (1):101–08.
  • Li, Z. T., D. M. Liu, Y. D. Cai, Y. P. Wang, and G. Y. Si. 2020. Evaluation of coal petrophysics incorporating fractal characteristics by mercury intrusion porosimetry and low-field NMR. Fuel 263:116802–116802. doi:10.1016/j.fuel.2019.116802.
  • Li, Y. Q., Y. M. Luo, H. Y. Du, W. Liu, L. P. Tang, and F. Xing. 2022. Evolution of microstructural characteristics of carbonated cement pastes subjected to high temperatures evaluated by MIP and SEM. Materials 15 (17):6037. doi:10.3390/ma15176037.
  • Liu, J. F., S. B. Song, X. L. Cao, Q. B. Meng, H. Pu, Y. G. Wang, and J. Liu. 2020. Determination of full-scale pore size distribution of Gaomiaozi bentonite and its permeability prediction. Journal of Rock Mechanics and Geotechnical Engineering 12 (2):403–13. doi:10.1016/j.jrmge.2019.12.005.
  • Liu, X. M., C. Wang, Y. D. Deng, and F. J. Cao. 2016. Computation of fractal dimension on conductive path of conductive asphalt concrete. Construction and Building Materials 115 (3):699–704. doi:10.1016/j.conbuildmat.2016.04.051.
  • Liu, B., S. B. Yao, W. X. Hu, J. Cao, and D. L. Xie. 2017. Application of nuclear magnetic resonance cryoporometry in unconventional reservoir rocks. Acta Pet Simulator X 38 (12):1401–10.
  • Lu, J., C. S. Zheng, W. C. Liu, H. Li, S. L. Shi, Y. Lu, Q. Ye, and Y. N. Zheng. 2023. Evolution of the pore structure and fractal characteristics of coal under microwave-assisted acidification. Fuel 347:128500. doi:10.1016/j.fuel.2023.128500.
  • Ma, S. W., L. Wei, Y. J. Wang, and T. Zhang. 2022. Characterization and evaluation of microscopic pore structure of tight sandstone reservoir in he 8 member, southern ordos basin. Exploration and Mining Geology 58 (6):1321–30.
  • Qin, L., C. Ma, S. G. Li, H. F. Lin, and P. Wang. 2023. Mechanical characteristics and deterioration mechanism of frozen and melted coal under liquid nitrogen. Engineering and Mining Journal 10 (24):1–13.
  • Qi, L., P. Wang, C. Zhai, S. G. Li, H. F. Lin, and H. Long. 2023. Study on fractal characteristics of cryogenic liquid nitrogen frozen coal by nitrogen adsorption method and mercury injection method. Engineering and Mining Journal 40 (1):184–93.
  • Qi, L. L., X. Q. Zhou, X. S. Peng, X. J. Chen, Z. F. Wang, and F. H. An. 2022. Study on the difference of pore structure of anthracite under different particle sizes using low-temperature nitrogen adsorption method. Environmental Science and Pollution Research 30 (2):5216–30. doi:10.1007/s11356-022-22533-8.
  • Qu, H., C. Y. Li, C. W. Qi, X. J. Chen, Y. Xu, H. Jun, and X. G. Wu. 2022. Effect of liquid nitrogen freezing on the mechanical strength and fracture morphology in a deep shale gas reservoir. Rock Mechanics & Rock Engineering 55 (12):7715–30. doi:10.1007/s00603-022-03035-y.
  • Shen, Y. J., X. Wang, C. H. Zhao, S. Q. Wang, C. Guo, Q. M. Shi, and W. Ma. 2021. Experimental study on multi-scale pore structure characteristics of tar-rich coal in Yushenfu miningarea. The International Journal of Coal Geology 49 (3):33–41.
  • Su, S. B., Q. Wang, J. X. Song, P. H. Chen, S. Yao, J. T. Hong, and F. D. Zhou. 2017. Experimental study of water blocking damage on coal. Journal of Petroleum Science & Engineering 156:654–61. doi:10.1016/j.petrol.2017.06.048.
  • Wang, G. X. C. Chen, W. M. Cheng, and H. Chen. 2023. Multi-scale characterization of coal pore and fractures and its influence on permeability—taking 14 large coal bases in China as examples. J. Chongqing Univ Pp:1-17. doi:10.11835/j.issn.1000-582X.2023.252.
  • Wang, G. D., Y. Han, X. J. Qin, Z. Liu, and J. F. Liu. 2020. A comprehensive method for studying pore structure and seepage characteristics of coal mass based on 3D CT reconstruction and NMR. Fuel 281:118735. doi:10.1016/j.fuel.2020.118735.
  • Wang, H. T., Y. Yang, J. Y. Zhang, and Z. B. Gen. 2019. Current state and progress in imaging the microstructure of geological porous media. Progress in Geophysics 34 (1):0191–99.
  • Wedler, C., and R. Span. 2021. Micropore analysis of biomass chars by CO2 adsorption: Comparison of different analysis method. Energy Fuels 35 (10):8799–806. doi:10.1021/acs.energyfuels.1c00280.
  • Wu, S., H. K. Ge, T. T. Li, X. Q. Wang, N. Li, Y. S. Zou, and K. Gao. 2022. Characteristics of fractures stimulated by supercritical carbon dioxide fracturing in shale based on acoustic emission monitoring. International Journal of Rock Mechanics & Mining Sciences 152:105065. doi:10.1016/j.ijrmms.2022.105065.
  • Yang, C. Y., H. Z. Chang, X. H. Shao, C. S. Hao, Q. L. Tian, J. Wu, and J. S. Jia. 2019. Micropore characteristics of coal with different coal structure under scanning electron microscope. Coal Science Technology 47 (12):194–200.
  • Yang, Q., Y. B. Yu, W. M. Cheng, X. Zhang, L. Zheng, W. T. Cui, and H. Xing. 2022. Spatial and temporal evolution of crack pores in coal bearing rock based on micro-CT. Chin J Rock Mech Eng 41 (S1):2626–38.
  • Yuan, L. 2016. Strategic consideration on co-mining of deep coal and gas. Journal of the China Coal Society 41 (1):1–6.
  • Yuan, J. W., J. X. Chen, Y. Wang, J. Y. Xia, and M. Chen. 2022. Research on the effect of freeze-thaw cycles at different temperatures on the pore structure of water-saturated coal samples. ACS Omega 7 (31):27649–55. doi:10.1021/acsomega.2c03306.
  • Yuan, J. W., Y. Wang, J. Y. Xia, J. X. Chen, and M. Chen. 2022. Research on the influence of liquid nitrogen freeze-thaw cycles on gas emission characteristics of coal. Energy Sources, Part a Recovery, Utilization, & Environmental Effects 44 (3):7145–59. doi:10.1080/15567036.2022.2107734.
  • Yu, W., L. J. Liu, B. G, L. N. Wang, and S. L. Yue. 2022. Pore structure of coal gasification fine slag based on nitrogen adsorption and nuclear magnetic resonance analysis. Journal of Fuel Chemistry and Technology 50 (8):966–73.
  • Zhai, C., L. Qin, S. M. Liu, J. Z. Xu, Z. Q. Tang, and S. L. Wu. 2016. Pore structure in coal: Pore evolution after cryogenic freezing with cyclic liquid nitrogen injection and its implication on coalbed methane extraction. Energy Fuels 30 (7):5–6. doi:10.1021/acs.energyfuels.6b00920.
  • Zhai, C., and Y. Sun. 2017. Experimental study on pore structure evolution of coal with low temperature circulation cracking. Coal Science Technology 45 (6):24–29.
  • Zhai, C., S. L. Wu, S. M. Liu, L. Qin, and J. Z. Xu. 2017. Experimental study on coal pore structure deterioration under freeze–thaw cycles. Environmental Earth Sciences 82 (12):1–16. doi:10.1007/s12665-017-6829-9.
  • Zheng, X., J. C. You, Y. T. Zhu, and Y. J. Li. 2022. Applications of scanning electron microscopy in polymer characterization. Acta Polym Sin 53 (5):539–60.
  • Zhou, D. W., J. H. Liu, P. J. Duan, L. N. Cheng, and B. C. Lou. 2022. Evolvement law and mechanism of ultralow temperature freeze-thaw cycle damage of concrete. Journal of Building Materials and Structures 25 (5):490–97.
  • Zhou, H. W., J. C. Zhong, W. G. Ren, X. Y. Wang, and H. Y. Yi. 2018. Characterization of pore-fracture networks and their evolution at various measurement scales in coal samples using X-ray μCT and a fractal method. International Journal of Coal Geology 189:35–49. doi:10.1016/j.coal.2018.02.007.
  • Zhu, C. X., J. X. Sun, and Y. W. Wang. 2022. Experimental study on dynamic evolution process of crack in grouting block under CT scanning uniaxial compression. Rock and Soil Mechanics 43 (9):2493–503.
  • Zhu, R. K., S. T. Wu, L. Su, J. W. Cui, Z. G. Mao, and X. X. Zhang. 2016. Problems and future works of porous texture characterization of tight reservoirs in China. Acta Pet Simulator X 37 (11):1323–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.