142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular simulation and experimentation studies on the low-temperature oxidation of water-containing coal in the goaf atmosphere

, ORCID Icon, , &
Pages 439-449 | Received 18 Sep 2023, Accepted 11 Nov 2023, Published online: 27 Nov 2023

References

  • Arens, M., M. Åhman, and V. Vogl. 2021. Which countries are prepared to green their coal-based steel industry with electricity? - reviewing climate and energy policy as well as the implementation of renewable electricity. Renewable and Sustainable Energy Reviews 143:110938. doi:10.1016/j.rser.2021.110938.
  • Cao, N., G. Wang, Y. Liang, S. Hussain, and S. Hussain. 2021. Study on the microscopic mechanism of spontaneous combustion and oxidation kinetics of water-leached coal. Journal of Chemistry 2021:1–15. doi:10.1155/2021/5564290.
  • Chen, L., X. Qi, J. Tang, H. Xin, and Z. Liang. 2021. Reaction pathways and cyclic chain model of free radicals during coal spontaneous combustion. Fuel 293:293. doi:10.1016/j.fuel.2021.120436.
  • Deng, J., L.-F. Ren, L. Ma, C.-K. Lei, G.-M. Wei, and W.-F. Wang. 2018. Effect of oxygen concentration on low-temperature exothermic oxidation of pulverized coal. Thermochimica Acta 667:102–10. doi:10.1016/j.tca.2018.07.012.
  • Dong, X., F. Wang, L. Guo, Y. Zhang, and X. Dong. 2022. Investigation of competitive adsorption properties of CO/CO2/O2 onto the Kailuan coals by Molecular simulation. ACS Omega 7:19305–18. doi:10.1021/acsomega.2c00831.
  • Gao, J., R. Chu, X. Meng, J. Yang, D. Yang, X. Li, and W. Lou. 2020. Synergistic mechanism of CO2 and active functional groups during low temperature oxidation of lignite. Fuel 278:118407. doi:10.1016/j.fuel.2020.118407.
  • Guo, H., Y. Cheng, L. Wang, S. Lu, and K. Jin. 2015. Experimental study on the effect of moisture on low-rank coal adsorption characteristics. Journal of Natural Gas Science & Engineering 24:245–51. doi:10.1016/j.jngse.2015.03.037.
  • Han, G., Z. Dong, L. Zhao, and Q. Zhang. 2022. Experimental study on spontaneous combustion characteristics of large coal particles after soaking. ACS Omega 7 (15):13102–11. doi:10.1021/acsomega.2c00521.
  • Han, J. X., Y. J. Lu, E. Y. Makarova, A. K. Bogomolov, and Z. Z. Yang. 2019. Molecular simulation of CH4 and CO2 competitive adsorption in moisture coals. Solid Fuel Chemistry 53 (5):270–79. doi:10.3103/S0361521919050057.
  • Hao, M., C. Wei, and Z. Qiao. 2021. Effect of internal moisture on CH4 adsorption and diffusion of coal: A molecular simulation study. Chemical Physics Letters 783:139086. doi:10.1016/j.cplett.2021.139086.
  • Lan, L., S. Yang, X. Jiang, B. Zhou, and F. Kang. 2023. Spontaneous combustion characteristics and Inhibition of air-dried coal with varying water soaking times. Combustion Science and Technology 1–17. doi:10.1080/00102202.2023.2225130.
  • Li, F., M. Chu, J. Tang, Z. Liu, Y. Zhou, and J. Wang. 2021. Exergy analysis of hydrogen-reduction based steel production with coal gasification-shaft furnace-electric furnace process. International Journal of Hydrogen Energy 46 (24):12771–83. doi:10.1016/j.ijhydene.2021.01.083.
  • Liu, Y., H. Wen, J. Guo, Y. Jin, S. Fan, G. Cai, and R. Liu. 2023. Correlation between oxygen concentration and reaction rate of low-temperature coal oxidation: A case study of long-flame coal. Energy 275:275. doi:10.1016/j.energy.2023.127483.
  • Lu, W., J. Li, J. Li, Q. He, W. Hao, and Z. Li. 2021. Oxidative kinetic characteristics of dried soaked coal and its related spontaneous combustion mechanism. Fuel 305. doi:10.1016/j.fuel.2021.121626.
  • Meng, J., R. Zhong, S. Li, F. Yin, and B. Nie. 2018. Molecular model construction and study of gas adsorption of Zhaozhuang coal. Energy & Fuels 32 (9):9727–37. doi:10.1021/acs.energyfuels.8b01940.
  • Miao, J., S. Yang, X. Jiang, Z. Hou, and H. Shao. 2023. Effect of the sudden change of ambient atmosphere on free radicals in coal body by CO2 fire prevention gas injection. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 45 (1):829–40. doi:10.1080/15567036.2023.2174619.
  • Nie, S., M. Tang, S. Xing, C. Han, R. Qin, X. Song, and G. Dai. 2019. Investigation of water influence on coal based on thermal oxidative degradation kinetics. Journal of Thermal Analysis and Calorimetry 139 (2):1265–74. doi:10.1007/s10973-019-08503-2.
  • Song, Y., S. Yang, W. Song, Z. Zhang, K. Yang, X. Jiang, Q. Zhou, and D. Zhang. 2020. Adsorption characteristics of soaked air-dried coal and reaction characteristics of free radical functional groups in CH4-containing oxidizing atmosphere. Combustion Science and Technology 194 (6):1226–46. doi:10.1080/00102202.2020.1806253.
  • Tang, Z., G. Xu, S. Yang, J. Deng, Q. Xu, and P. Chang. 2021. Fire-retardant foam designed to control the spontaneous combustion and the fire of coal: Flame retardant and extinguishing properties. Powder Technology 384:258–66. doi:10.1016/j.powtec.2021.02.024.
  • Wang, K., H. Fan, P. Gao, Y. He, and C. Yang. 2020. Influence of water content on the coal spontaneous combustion behavior during low-temperature pre-pyrolysis processes. Combustion Science and Technology 193 (12):2058–69. doi:10.1080/00102202.2020.1727456.
  • Wu, S., Z. Jin, and C. Deng. 2019. Molecular simulation of coal-fired plant flue gas competitive adsorption and diffusion on coal. Fuel 239:87–96. doi:10.1016/j.fuel.2018.11.011.
  • Wu, Y., Y. Zhang, J. Wang, X. Zhang, J. Wang, and C. Zhou. 2020. Study on the effect of extraneous moisture on the spontaneous combustion of coal and its mechanism of action. Energies 13 (8):1969. doi:10.3390/en13081969.
  • Xu, Q., S. Yang, J. Cai, B. Zhou, and Y. Xin. 2018. Risk forecasting for spontaneous combustion of coals at different ranks due to free radicals and functional groups reaction. Process Safety and Environmental Protection 118:195–202. doi:10.1016/j.psep.2018.06.040.
  • Zhang, Y., P. Shu, J. Deng, Z. Duan, L. Li, and L. Zhang. 2022. Analysis of oxidation pathways for characteristic groups in coal spontaneous combustion. Energy 254:254. doi:10.1016/j.energy.2022.124211.
  • Zheng, M., Y. Pan, Z. Wang, X. Li, and L. Guo. 2020. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments. Fuel 268:268. doi:10.1016/j.fuel.2020.117290.
  • Zhong, X., L. Kan, H. Xin, B. Qin, and G. Dou. 2019. Thermal effects and active group differentiation of low-rank coal during low-temperature oxidation under vacuum drying after water immersion. Fuel 236:1204–12. doi:10.1016/j.fuel.2018.09.059.
  • Zhou, B., S. Yang, C. Wang, X. Hu, W. Song, J. Cai, Q. Xu, and N. Sang. 2020. The characterization of free radical reaction in coal low-temperature oxidation with different oxygen concentration. Fuel 262:116524. doi:10.1016/j.fuel.2019.116524.
  • Zhou, B., S. Yang, W. Yang, X. Jiang, W. Song, J. Cai, Q. Xu, and Z. Tang. 2022. Variation characteristics of active groups and macroscopic gas products during low-temperature oxidation of coal under the action of inert gases N2 and CO2. Fuel 307:121893. doi:10.1016/j.fuel.2021.121893.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.