159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of hydrogen ejector structure in proton exchange membrane fuel cell system under wide operating conditions

, , &
Pages 522-542 | Received 28 Aug 2023, Accepted 14 Nov 2023, Published online: 27 Nov 2023

References

  • Brunner, D. A., S. Marcks, M. Bajpai, A. K. Prasad, and S. G. Advani. 2012. Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications. International Journal of Hydrogen Energy 37 (5):4457–66. doi:10.1016/j.ijhydene.2011.11.116.
  • Chen, Z., X. Jin, A. Shimizu, E. Hihara, and C. Dang. 2017. Effects of the nozzle configuration on solar-powered variable geometry ejectors. Solar Energy 150:275–86. doi:10.1016/j.solener.2017.04.017.
  • Chen, L., K. Xu, Z. Yang, Z. Yan, C. Zhai, and Z. Dong. 2023. Optimal design of a novel nested-nozzle ejector for PEMFC’s hydrogen supply and recirculation system. International Journal of Hydrogen Energy 48 (70):27330–43. doi:10.1016/j.ijhydene.2023.03.403.
  • Dadvar, M., and E. Afshari. 2014. Analysis of design parameters in anodic recirculation system based on ejector technology for PEM fuel cells: A new approach in designing. International Journal of Hydrogen Energy 39 (23):12061–73. doi:10.1016/j.ijhydene.2014.06.046.
  • Dong, J., Q. Hu, M. Yu, Z. Han, W. Cui, D. Liang, H. Ma, and X. Pan. 2020. Numerical investigation on the influence of mixing chamber length on steam ejector performance. Applied Thermal Engineering 174:115204. doi:10.1016/j.applthermaleng.2020.115204.
  • Du, Z., Q. Liu, X. Wang, and L. Wang. 2021. Performance investigation on a coaxial-nozzle ejector for PEMFC hydrogen recirculation system. International Journal of Hydrogen Energy 46 (76):38026–39. doi:10.1016/j.ijhydene.2021.09.048.
  • ESDU. 1985. Ejector and jet pumps, data item 86030. London: ESDU International Ltd.
  • Feng, J., J. Han, T. Hou, and X. Peng. 2020. Performance analysis and parametric studies on the primary nozzle of ejectors in proton exchange membrane fuel cell systems. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 1–20. doi:10.1080/15567036.2020.1804489.
  • Guo, H., C. Wang, and L. Wang. 2022. Optimization of the primary nozzle for design a high entrainment ejector in spacesuit portable life support system. Applied Thermal Engineering 217:119159. doi:10.1016/j.applthermaleng.2022.119159.
  • Hailun, Z., W. Sun, H. Xue, W. Sun, L. Wang, and L. Jia. 2021. Performance analysis and prediction of ejector based hydrogen recycle system under variable proton exchange membrane fuel cell working conditions. Applied Thermal Engineering 197:117302. doi:10.1016/j.applthermaleng.2021.117302.
  • Han, J., J. Feng, T. Hou, and X. Peng. 2020. Performance investigation of a multi‐nozzle ejector for proton exchange membrane fuel cell system. International Journal of Energy Research 45 (2):3031–48. doi:10.1002/er.5996.
  • Hosseinzadeh, E., M. Rokni, M. Jabbari, and H. Mortensen. 2014. Numerical analysis of transport phenomena for designing of ejector in PEM forklift system. International Journal of Hydrogen Energy 39 (12):6664–74. doi:10.1016/j.ijhydene.2014.02.061.
  • Hwang, J.-J., C.-C. Cho, W. Wu, C.-H. Chiu, K.-C. Chiu, and C.-H. Lin. 2015. Numerical and experimental investigation into passive hydrogen recovery scheme using vacuum ejector. Journal of Power Sources 275:539–46. doi:10.1016/j.jpowsour.2014.11.057.
  • Kim, M., W.-Y. Lee, and C.-S. Kim. 2007. Development of the variable multi-ejector for a mini-bus PEMFC system. ECS Transactions 5 (1):773–80. doi:10.1149/1.2729058.
  • Kim, M., Y.-J. Sohn, C.-W. Cho, W.-Y. Lee, and C.-S. Kim. 2008. Customized design for the ejector to recirculate a humidified hydrogen fuel in a submarine PEMFC. Journal of Power Sources 176 (2):529–33. doi:10.1016/j.jpowsour.2007.08.069.
  • Kuo, J.-K., W.-Z. Jiang, C.-H. Li, and T.-H. Hsu. 2020. Numerical investigation into hydrogen supply stability and I-V performance of PEM fuel cell system with passive Venturi ejector. Applied Thermal Engineering 169:114908. doi:10.1016/j.applthermaleng.2020.114908.
  • Liu, Z., Z. Liu, K. Jiao, Z. Yang, X. Zhou, and Q. Du. 2020. Numerical investigation of ejector transient characteristics for a 130‐kW PEMFC system. International Journal of Energy Research 44 (5):3697–710. doi:10.1002/er.5156.
  • Liu, J., L. Wang, L. Jia, and X. Wang. 2018. Thermodynamic model for all modes performance analysis of supersonic ejector considering non-uniform distribution of flow field. International Journal of Refrigeration 96:17–24. doi:10.1016/j.ijrefrig.2018.08.023.
  • Lun, L., J. Shaobo, and C. Qiulin. 2019. Numerical analysis of an ejector for fuel cell with adjustable flow rate. Internal Combustion Engine & Powerplant 36 (3):30–36.
  • Maghsoodi, A., E. Afshari, and H. Ahmadikia. 2014. Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm. Applied Thermal Engineering 71 (1):410–18. doi:10.1016/j.applthermaleng.2014.06.067.
  • Nikiforow, K., P. Koski, and J. Ihonen. 2017. Discrete ejector control solution design, characterization, and verification in a 5 kW PEMFC system. International Journal of Hydrogen Energy 42 (26):16760–72. doi:10.1016/j.ijhydene.2017.05.151.
  • Nikiforow, K., P. Koski, H. Karimäki, J. Ihonen, and V. Alopaeus. 2016. Designing a hydrogen gas ejector for 5 kW stationary PEMFC system – CFD-modeling and experimental validation. International Journal of Hydrogen Energy 41 (33):14952–70. doi:10.1016/j.ijhydene.2016.06.122.
  • Pei, P., P. Ren, Y. Li, Z. Wu, D. Chen, S. Huang, and X. Jia. 2019. Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system. Applied Energy 235:729–38. doi:10.1016/j.apenergy.2018.11.005.
  • Ramesh, A. S., and S. J. Sekhar. 2018. Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector. Energy 164:1097–113. doi:10.1016/j.energy.2018.09.010.
  • Rusly, E., L. Aye, W. W. S. Charters, and A. Ooi. 2005. CFD analysis of ejector in a combined ejector cooling system. International Journal of Refrigeration 28 (7):1092–101. doi:10.1016/j.ijrefrig.2005.02.005.
  • Sokolov, E. Y., and N. M. Zinger. 1970. Jet apparatuses. second. Moscow: Energiya.
  • Song, Y., L. Wang, L. Jia, and X. Wang. 2023. Optimization and performance investigation of confocal twin-nozzle ejector for PEMFC hydrogen supply and recirculation system under actual variable operating conditions. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2023.07.201.
  • Song, Y., X. Wang, L. Wang, F. Pan, W. Chen, and F. Xi. 2021. A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system. Applied Energy 300:117442. doi:10.1016/j.apenergy.2021.117442.
  • Sun, H., and J. Wang. 2005. Flow measurement throttling device design handbook. Beijing: Chemical Industry Press.
  • Tashtoush, B. M., M. D. A. Al-Nimr, and M. A. Khasawneh. 2017. Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system. Applied Energy 206:1446–63. doi:10.1016/j.apenergy.2017.09.117.
  • Toghyani, S., E. Baniasadi, and E. Afshari. 2018. Performance analysis and comparative study of an anodic recirculation system based on electrochemical pump in proton exchange membrane fuel cell. International Journal of Hydrogen Energy 43 (42):19691–703. doi:10.1016/j.ijhydene.2018.08.194.
  • Truong Le Tri, D., H. N. Vu, J. Woo, Y. Kim, and S. Yu. 2023. Optimization of the ejector parameters for anodic recirculation systems in high-performance dual-stack proton-exchange membrane fuel cells. Energy Conversion and Management 296:117712. doi:10.1016/j.enconman.2023.117712.
  • Wang, Y., L. Wang, H. Zhang, and L. Jia. 2020. Performances investigation of Ejector affected by Secondary Flow Humidity in PEMFC. 2020 Chinese Automation Congress (CAC) (pp. 3476–81). Shanghai, China:IEEE. doi:10.1109/CAC51589.2020.9327538.
  • Wang, B., K. Wu, F. Xi, J. Xuan, X. Xie, X. Wang, and K. Jiao. 2019. Numerical analysis of operating conditions effects on PEMFC with anode recirculation. Energy 173:844–56. doi:10.1016/j.energy.2019.02.115.
  • Wang, X., S. Xu, and C. Xing. 2019. Numerical and experimental investigation on an ejector designed for an 80 kW polymer electrolyte membrane fuel cell stack. Journal of Power Sources 415:25–32. doi:10.1016/j.jpowsour.2019.01.039.
  • Xue, H., L. Wang, H. Zhang, L. Jia, and J. Ren. 2020. Design and investigation of multi-nozzle ejector for PEMFC hydrogen recirculation. International Journal of Hydrogen Energy 45 (28):14500–16. doi:10.1016/j.ijhydene.2020.03.166.
  • Yin, Y., M. Fan, K. Jiao, Q. Du, and Y. Qin. 2016. Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system. Energy Conversion and Management 126:1106–17. doi:10.1016/j.enconman.2016.09.024.
  • Yin, B., Z. Li, F. Dong, S. Xu, and H. Ni. 2023. A novel dual-nozzle ejector for enhancement of hydrogen recirculation applied to proton exchange membrane fuel cell system. Journal of Power Sources 580:233444. doi:10.1016/j.jpowsour.2023.233444.
  • Yu, M., C. Wang, L. Wang, and X. Wang. 2024. Flow characteristics of coaxial-nozzle ejector for PEMFC hydrogen recirculation system. Applied Thermal Engineering 236:121541. doi:10.1016/j.applthermaleng.2023.121541.
  • Zhang, X., L. Wang, H. Zhang, and L. Jia. 2020. Optimization of ejector structure for the PEMFC hydrogen recirculation system. 2020 Chinese Automation Congress (CAC) (pp.2954–59). Shanghai, China: IEEE. doi:10.1109/CAC51589.2020.9327006.
  • Zhu, Y., W. Cai, C. Wen, and Y. Li. 2009. Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering 29 (5–6):898–905. doi:10.1016/j.applthermaleng.2008.04.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.