97
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pyrolysis kinetics and thermodynamic behavior of pseudo components of raw and torrefied maple wood

& ORCID Icon
Pages 462-474 | Received 08 Aug 2023, Accepted 14 Nov 2023, Published online: 27 Nov 2023

References

  • Anca-Couce, A., A. Berger, and N. Zobel. 2014. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel 123:230–40. doi:10.1016/j.fuel.2014.01.014.
  • Bin, Y., Z. Yu, Z. Huang, M. Li, Y. Zhang, and X. Ma. 2022. Investigation on the co-pyrolysis of municipal solid waste and sawdust: Pyrolysis behaviors, kinetics, and thermodynamic analysis. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (3):8001–11. doi:10.1080/15567036.2022.2116505.
  • Brems, A., J. Baeyens, C. Vandecasteele, and R. Dewil. 2011. Polymeric cracking of waste polyethylene terephthalate to chemicals and Energy. Journal of the Air & Waste Management Association 16 (7):721–31. doi:10.3155/1047-3289.61.7.721.
  • Cardarelli, A., S. Pinzi, and M. Barbanera. 2022. Effect of torrefaction temperature on spent coffee grounds thermal behaviour and kinetics. Renewable Energy 185:704–16. doi:10.1016/j.renene.2021.12.116.
  • Chen, Z., M. Hu, X. Zhu, D. Guo, S. Liu, Z. Hu, B. Xiao, J. Wang, and M. Laghari. 2015. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresource Technology 192:441–50. doi:10.1016/j.biortech.2015.05.062.
  • Chen, C., W. Miao, C. Zhou, and H. Wu. 2017. Thermogravimetric pyrolysis kinetics of bamboo waste via asymmetric Double sigmoidal (Asym2sig) function deconvolution. Bioresource Technology 225:48–57. doi:10.1016/j.biortech.2016.11.013.
  • Criado, J. M. 1978. Kinetic analysis of DTG data from master curves. Thermochimica Acta 24 (1):186–89. doi:10.1016/0040-6031(78)85151-X.
  • da Silva, J. C. G., J. G. de Albuquerque, W. V. de Araujo Galdino, R. F. de Sena, and S. L. F. Andersen. 2020. Single-step and multi-step thermokinetic study–deconvolution method as a simple pathway for describe properly the biomass pyrolysis for energy conversion. Energy Conversation and Management 209:112653. doi:10.1016/j.enconman.2020.112653.
  • Fatmawati, A., T. Nurtono, and A. Widjaja. 2023. Thermogravimetric kinetic-based computation of raw and pretreated coconut husk powder lignocellulosic composition. Bioresource Technology Reports 22:101500. doi:10.1016/j.biteb.2023.101500.
  • Fu, J., J. Liu, W. Xu, Z. Chen, F. Evrendilek, and S. Sun. 2022. Torrefaction, temperature, and heating rate dependencies of pyrolysis of coffee grounds: Its performances, bio-oils, and emissions. Bioresource Technology 345:126346. doi:10.1016/j.biortech.2021.126346.
  • Gajera, B., U. Tyagi, A. K. Sarma, and M. K. Jha. 2022. Impact of torrefaction on thermal behavior of wheat straw and groundnut stalk biomass: Kinetic and thermodynamic study. Fuel Communications 12:100073. doi:10.1016/j.jfueco.2022.100073.
  • Hidayat, S., M. S. A. Bakar, A. Ahmed, D. A. Iryani, M. Hussain, F. Jamil, and Y. K. Park. 2021. Comprehensive kinetic study of Imperata Cylindrica pyrolysis via Asym2sig deconvolution and combined kinetics. Journal of Analytical and Applied Pyrolysis 156:105133. doi:10.1016/j.jaap.2021.105133.
  • Ho, S. H., C. Zhang, F. Tao, C. Zhang, and W. H. Chen. 2020. Microalgal torrefaction for solid biofuel production. Trends in Biotechnology 38 (9):1023–33. doi:10.1016/j.tibtech.2020.02.009.
  • Hu, Q., H. Yang, H. Xu, Z. Wu, C. J. Lim, X. T. Bi, and H. Chen. 2018. Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in-situ gasification of torrefied biomass pellets. Energy Conversion and Management 161:205–14. doi:10.1016/j.enconman.2018.02.003.
  • Janković, B., N. Manić, D. Stojiljković, and V. Jovanović. 2018. TSA-MS characterization and kinetic study of the pyrolysis process of various types of biomass based on the Gaussian multi-peak fitting and peak-to-peak approaches. Fuel 234:447–63. doi:10.1016/j.fuel.2018.07.051.
  • Korshunov, A., B. Kichatov, V. Sudakov, A. Kolobov, V. Gubernov, and A. Kiverin. 2020. Torrefaction of wood in a quiescent layer of talc. Energy & Fuels 34 (4):4660–69. doi:10.1021/acs.energyfuels.9b04478.
  • Lee, B. H., V. T. Trinh, S. M. Kim, and C. H. Jeon. 2022. Pyrolysis of kenaf (hibiscus cannabinus L.) biomass: Influence of ashless treatment on kinetics and thermal behavior. Journal of Thermal Analysis and Calorimetry 147 (13):7399–410. doi:10.1007/s10973-021-11036-2.
  • Li, H., Y. Yu, F. Yi, J. Qiang, C. Li, N. Zhao, J. Lu, Z. Jia, L. Zhou, P. Mperejekumana, et al. 2022a. Characteristics and formation of nitrogen-containing products from the pyrolysis of maple wood and maize straw. Journal of Analytical and Applied Pyrolysis 163:105462. doi:10.1016/j.jaap.2022.105462.
  • Li, W., Y. Huang, H. Liu, Y. Zhang, Y. Jiang, Y. Wang, J. Wan, and X. Yin. 2022b. Kinetic and thermodynamic studies of biomass pseudo-components under thermo-oxidative degradation conditions using asymmetric function of bi-Gaussian as deconvolution technique. Renewable Energy 188:491–503. doi:10.1016/j.renene.2022.02.024.
  • Li, R., C. Wu, L. Zhu, Z. Hu, J. Xu, Y. Yang, F. Yang, and Z. Ma. 2021. Regulation of the elemental distribution in biomass by the torrefaction pretreatment using different atmospheres and its influence on the subsequent pyrolysis behaviors. Fuel Processing Technology 222:106983. doi:10.1016/j.fuproc.2021.106983.
  • Mariyam, S., T. Al-Ansari, and G. McKay. 2023. Particle size impact on pyrolysis of multi-biomass: A solid-state reaction modeling study. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (2):3681–91. doi:10.1080/15567036.2023.2196945.
  • McNamee, P., P. W. R. Adams, M. C. McManus, B. Dooley, L. I. Darvell, A. Williams, and J. M. Jones. 2016. An assessment of the torrefaction of North American pine and life cycle greenhouse gas emissions. Energy Conversation and Management 113:177–88. doi:10.1016/j.enconman.2016.01.006.
  • Mishra, G., and T. Bhaskar. 2022. Insights into the decomposition kinetics of groundnut shell: An advanced isoconversional approach. Renewable Energy 19:1–14. doi:10.1016/j.renene.2022.06.107.
  • Patil, Y., and X. Ku. 2022. Comparison and characterization of torrefaction performance and pyrolysis behaviour of softwood and hardwood. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (4):8860–77. doi:10.1080/15567036.2022.2126561.
  • Patil, Y., X. Ku, and V. Vasudev. 2023. Pyrolysis characteristics and determination of kinetic and thermodynamic parameters of raw and torrefied Chinese fir. ACS Omega 8 (38):34938–47. doi:10.1021/acsomega.3c04328.
  • Pinzi, S., C. Buratti, P. Bartocci, G. Marseglia, F. Fantozzi, and M. Barbanera. 2020. A simplified method for kinetic modeling of coffee silver skin pyrolysis by coupling pseudo-components peaks deconvolution analysis and model free-isoconversional methods. Fuel 278:118260. doi:10.1016/j.fuel.2020.118260.
  • Prabhakar, A., A. K. Sadhukhan, and P. Gupta. 2022. Study of co-pyrolysis kinetics, synergetic effects, and thermodynamics of coal and biomass blends. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (3):7095–108. doi:10.1080/15567036.2022.2106326.
  • Qin, K., and H. Thunman. 2015. Diversity of chemical composition and combustion reactivity of various biomass fuels. Fuel 147:161–69. doi:10.1016/j.fuel.2015.01.047.
  • Romero Millán, L. M., F. E. Sierra Vargas, and A. Nzihou. 2017. Kinetic analysis of tropical lignocellulosic agrowaste pyrolysis. BioEnergy Resources 10 (3):832–45. doi:10.1007/s12155-017-9844-5.
  • Ru, B., S. Wang, G. Dai, and L. Zhang. 2015. Effect of torrefaction on biomass physicochemical characteristics and the resulting pyrolysis behavior. Energy & Fuels 29 (9):5865–74. doi:10.1021/acs.energyfuels.5b01263.
  • Saffe, A., A. Fernandez, M. Echegaray, G. Mazza, and R. Rodriguez. 2019. Pyrolysis kinetics of regional agro-industrial wastes using isoconversional methods. Biofuels 10 (2):245–57. doi:10.1080/17597269.2017.1316144.
  • Starink, M. J. 2003. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochimica Acta 404 (1–2):163–76. doi:10.1016/S0040-6031(03)00144-8.
  • Tariq, R., S. Saeed, M. Riaz, and S. Saeed. 2023. Kinetic and thermodynamic evaluation of almond shells pyrolytic behavior using coats–Redfern and pyrolysis product distribution model. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (2):4446–62. doi:10.1080/15567036.2023.2202639.
  • Torres-Sciancalepore, R., A. Fernandez, D. Asensio, M. Riveros, M. P. Fabani, G. Fouga, R. Rodriguez, and G. Mazza. 2022. Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds. Energy Conversion and Management 252:115076. doi:10.1016/j.enconman.2021.115076.
  • Van de Velden, M., J. Baeyens, A. Brems, B. Janssens, and R. Dewil. 2010. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy 35 (1):232–42. doi:10.1016/j.renene.2009.04.019.
  • Vasudev, V., X. Ku, and J. Lin. 2021. Combustion behavior of algal biochars obtained at different pyrolysis heating rates. ACS Omega 6 (29):19144–52. doi:10.1021/acsomega.1c02493.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta 520 (1–2):1–19. doi:10.1016/j.tca.2011.03.034.
  • Wang, X., M. Hu, W. Hu, Z. Chen, S. Liu, Z. Hu, and B. Xiao. 2016. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresource Technology 219:510–20. doi:10.1016/j.biortech.2016.07.136.
  • Zheng, A., Z. Zhao, Z. Huang, K. Zhao, G. Wei, X. Wang, F. He, and H. Li. 2014. Catalytic fast pyrolysis of biomass pretreated by torrefaction with varying severity. Energy & Fuels 28 (9):5804–11. doi:10.1021/ef500892k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.