73
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An experimental study for efficiency modeling of grid-connected photovoltaic system

&
Pages 475-492 | Received 16 Jun 2023, Accepted 14 Nov 2023, Published online: 27 Nov 2023

References

  • Abdullah Al Mamun, M., M. Hasanuzzaman, and J. Selvaraj. 2017. Experimental investigation of the effect of partial shading on photovoltaic performance. IET Renewable Power Generation 11 (7):912–21. doi:10.1049/iet-rpg.2016.0902.
  • Abdulmunem, A. R., P. Mohd Samin, H. Abdul Rahman, H. A. Hussien, and I. I. Mazali, Izhari Izmi Mazali. 2020, November. Enhancing PV cell’s electrical efficiency using phase change material with copper foam matrix and multi-walled carbon nanotubes as passive cooling method. Renewable Energy 160:663–75. doi: 10.1016/j.renene.2020.07.037.
  • Allouhi, A., S. Rehman, M. S. Buker, and Z. Said. 2023. Recent technical approaches for improving energy efficiency and sustainability of PV and PV-T systems: A comprehensive review. Sustainable Energy Technologies and Assessments 56:103026. doi:10.1016/j.seta.2023.103026.
  • Asl-Soleimani, E., S. Farhangi, and M. S. Zabihi. 2001. The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran. Renewable Energy 24 (3–4):459–68. doi:10.1016/S0960-1481(01)00029-5.
  • Azli, H., S. Titri, C. Larbes, K. Kaced, and K. Femmam. 15 November 2022. Novel yellow saddle goatfish algorithm for improving performance and efficiency of PV system under partial shading conditions. Solar Energy. 247:295–307. doi:10.1016/j.solener.2022.10.029.
  • Demirkiran, M., and A. Karakaya. 2022. Efficiency analysis of photovoltaic systems installed in different geographical locations. Open Chemistry 20 (1):748–58. doi:10.1515/chem-2022-0190.
  • Dolara, A., G. C. Lazaroiu, S. Leva, and G. Manzolini. 2013. Experimental investigation of partial shading scenarios on PV (photovoltaic) modules. Energy 55:466–75. doi:10.1016/j.energy.2013.04.009.
  • Dwivedi, P., K. Sudhakar, A. Soni, E. Solomin, and I. Kirpichnikov. 2020. Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering 21:100674. doi:10.1016/j.csite.2020.100674.
  • Fan, S., X. Wang, S. Cao, Y. Wang, Y. Zhang, and B. Liu. 1 August 2022. A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels. Energy. 252:123927. doi:10.1016/j.energy.2022.123927.
  • Gaglia, A. G., S. Lykoudis, A. A. Argiriou, C. A. Balaras, and E. Dialynas. 2017. Energy efficiency of PV panels under real outdoor conditions–an experimental assessment in Athens, Greece. Renewable Energy 101 (February):236–43. doi:10.1016/j.renene.2016.08.051.
  • Han, L., N. Koide, Y. Chiba, and T. Mitate. 2004. Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters 84 (13):2433–35. doi:10.1063/1.1690495.
  • Huld, T., R. Gottschalg, H. G. Beyer, and M. Topic. 2010. Mapping the performance of PV modules, effects of module type and data averaging. Solar Energy 84 (2):324–38. doi:10.1016/j.solener.2009.12.002.
  • King, M., L. Dacheng, M. Dooner, S. Ghosh, J. Nath Roy, C. Chakraborty, and J. Wang. 2021. Chandan Chakraborty and Jihong Wang, mathematical modelling of a system for solar PV efficiency improvement using compressed air for panel cleaning and cooling. Energies 14 (14):4072. doi:10.3390/en14144072.
  • Kumari, S., A. Bhende, A. Pandit, and S. Rayalu. 2023. Efficiency enhancement of photovoltaic panel by heat harvesting techniques. Energy for Sustainable Development 73:303–14. doi:10.1016/j.esd.2023.02.007.
  • Makhdoomi, S., and A. Askarzadeh. 2020. Daily performance optimization of a grid-connected hybrid system composed of photovoltaic and pumped hydro storage (PV/PHS). Renewable Energy 159:272–85. doi:10.1016/j.renene.2020.06.020.
  • Masters, G. M. 2004. Renewable and Efficient Electric power systems. Hoboken, New Jersey: John Wiley & Sons, Inc.
  • Mekhilef, S., S. Rahman, and M. Kamalisarvestani. 2012. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and Sustainable Energy Reviews 16 (5):2920–25. doi:10.1016/j.rser.2012.02.012.
  • Raj Paudyal, B., and S. Raj Shakya. 2016. Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu. Solar Energy 135:103–10. doi:10.1016/j.solener.2016.05.046.
  • Sieckera, J., K. Kusakanaa, and B. P. Numbi. 2017. A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews 79:192–203. doi:10.1016/j.rser.2017.05.053.
  • Vasumathi, G., V. Jayalakshmi, and K. Sakthivel. 2023. Efficiency analysis of grid tied PV system with KY integrated SEPIC converter. Measurement: Sensors 27:100767. doi:10.1016/j.measen.2023.100767.
  • Ventura, C., G. Marco Tina, A. Gagliano, S. Aneli, and S. Aneli. 2021. Enhanced models for the evaluation of electrical efficiency of PV/T modules. Solar Energy 224 (August):531–44. doi:10.1016/j.solener.2021.06.018.
  • Villalva, M. G., J. R. Gazoli, and E. R. Filho. 2009. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics 24 (5):1198–208. doi:10.1109/TPEL.2009.2013862.
  • Wakim, F., 1981. Introduction of PV power generation to Kuwait. Kuwait Institute of Scientific Researchers, Report No. 440.
  • Wolf, M., G. Noel, and R. Stirm. 1977. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells. IEEE Transactions on Industrial Electronics 53:1017–26.
  • Yao, W., X. Kong, X. Han, Y. Wang, J. Cao, and W. Gao. 2022. Research on the efficiency evaluation of heat pipe PV/T systems and its applicability in different regions of China. Energy Conversion and Management 269:116136. doi:10.1016/j.enconman.2022.116136.
  • Zaghba, L., M. Khennane, S. Mekhilef, A. Fezzani, and A. Borni. 1 September 2022. Experimental outdoor performance assessment and energy efficiency of 11.28 kWp grid tied PV systems with sun tracker installed in saharan climate: A case study in Ghardaia, Algeria. Solar Energy. 243:174–92. doi:10.1016/j.solener.2022.07.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.