114
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Statistical approach and numerical analysis of turbulent diffusion flame of CH4/H2 mixture

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 636-658 | Received 22 Jun 2023, Accepted 18 Nov 2023, Published online: 04 Dec 2023

References

  • Baratta, M., S. Chiriches, P. Goel, and D. Misul. 2020. CFD modelling of natural gas combustion in IC engines under different EGR dilution and H2-doping conditions. Transportation Engineering 2:100018. doi:10.1016/j.treng.2020.100018.
  • Barlow, R. S. 2003. Sandia H2/He flame data–release 2.0. California: Sandia National Laboratories.
  • Bauer, C. G., and T. W. Forest. 2001. Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: Effect on SI engine performance. International Journal of Hydrogen Energy 26 (1):55–70. doi:10.1016/S0360-3199(00)00067-7.
  • Bazooyar, B., N. Hallajbashi, A. Shariati, and A. Ghorbani. 2014. An investigation of the effect of input air upon combustion performance and emissions of biodiesel and diesel fuel in an experimental boiler. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 36 (4):383–92. doi:10.1080/15567036.2010.538810.
  • Büyükakın, M. K., and S. Öztuna. 2020. Numerical investigation on hydrogen-enriched methane combustion in a domestic back-pressure boiler and non-premixed burner system from flame structure and pollutants aspect. International Journal of Hydrogen Energy 45 (60):35246–56. doi:10.1016/j.ijhydene.2020.03.117.
  • Chassaing, P. 2000. Turbulence in fluid mechanics: Phenomena analysis for its modelling for the use by engineers, 625. Toulouse, France: Cépaduès Editions.
  • Choudhuri, A. R., and S. R. Gollahalli. 2004. Intermediate radical concentrations in hydrogen–natural gas blended fuel jet flames. International Journal of Hydrogen Energy 29 (12):1293–1302. doi:10.1016/j.ijhydene.2003.12.006.
  • Day, M. S., X. Gao, and J. B. Bell. 2011. Properties of lean turbulent methane-air flames with significant hydrogen addition. Proceedings of the Combustion Institute 33 (1):1601–1608. Elsivier.
  • Di Sarli, V., and A. Di Benedetto. 2007. Laminar burning velocity of hydrogen–methane/air premixed flames. International Journal of Hydrogen Energy 32 (5):637–46. doi:10.1016/j.ijhydene.2006.05.016.
  • Driscoll, J. F. 2008. Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Progress in Energy and Combustion Science 34 (1):91–134. doi:10.1016/j.pecs.2007.04.002.
  • Echekki, T., and E. Mastorakos. 2011. Turbulent Combustion Modeling: Advances, New Trends and Perspectives, 19–39. Springer Link.
  • El-Ghafour, S. A. A., A. H. E. El-Dein, and A. A. R. Aref. 2010. Combustion characteristics of natural gas–hydrogen hybrid fuel turbulent diffusion flame. International Journal of Hydrogen Energy 35 (6):2556–65. doi:10.1016/j.ijhydene.2009.12.049.
  • Flury, M. (1999). Experimentelle Analyse der Mischungsstruktur in turbulenten nicht vorgemischten Flammen (Doctoral dissertation, ETH Zurich).
  • Francis, K. A., R. Sreenivasan, and V. Raghavan. 2011. Investigation of structures and reaction zones of methane–hydrogen laminar jet diffusion flames. International Journal of Hydrogen Energy 36 (17):11183–94. doi:10.1016/j.ijhydene.2011.06.002.
  • Frassoldati, A., P. Sharma, A. Cuoci, T. Faravelli, and E. Ranzi. 2010. Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow. Applied Thermal Engineering 30 (4):376–83. doi:10.1016/j.applthermaleng.2009.10.001.
  • Giusti, A., and E. Mastorakos. 2019. Turbulent combustion modelling and experiments: Recent trends and developments. Flow, Turbulence and Combustion 103 (4):847–69. doi:10.1007/s10494-019-00072-6.
  • Gu, M., H. Chu, and F. Liu. 2016. Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame. Combustion and Flame 166:216–28. doi:10.1016/j.combustflame.2016.01.023.
  • Guo, H., S. W. Neill, and G. J. Smallwood. January 2006. A numerical investigation of NOx formation in counterflow CH4/H2/air diffusion flames. ASME International Mechanical Engineering Congress and Exposition 47853:31–37.
  • Halter, F., C. Chauveau, N. Djebaïli-Chaumeix, and I. Gökalp. 2005. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures. Proceedings of the combustion institude 30 (1):201–208.
  • Heyl, A., and H. Bockhorn. 2001. Flamelet modeling of NO formation in laminar and turbulent diffusion flames. Chemosphere 42 (5–7):449–62. doi:10.1016/S0045-6535(00)00217-4.
  • Hilbert, R., F. Tap, H. El-Rabii, and D. Thévenin. 2004. Impact of detailed chemistry and transport models on turbulent combustion simulations. Progress in Energy and Combustion Science 30 (1):61–117. doi:10.1016/j.pecs.2003.10.001.
  • Ilbas, M., İ. Yılmaz, and Y. Kaplan. 2005. Investigations of hydrogen and hydrogen–hydrocarbon composite fuel combustion and NOx emission characteristics in a model combustor. International Journal of Hydrogen Energy 30 (10):1139–1147. doi:10.1016/j.ijhydene.2004.10.016.
  • Karbasi, M., and I. Wierzba. 1998. The effects of hydrogen addition on the stability limits of methane jet diffusion flames. International Journal of Hydrogen Energy 23 (2):123–129. doi:10.1016/S0360-3199(97)00031-1.
  • Kobayashi, H., K. Seyama, H. Hagiwara, and Y. Ogami. 2005. Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proceeding of the Combustion Institude 30 (1):827–834.
  • McGuirk, J. J., and W. Rodi. 1979. The calculation of three-dimensional turbulent free jets. In turbulent shear flows I: Selected papers from the first International symposium on turbulent shear flows. Pennsylvania, USABerlin Heidelberg, The Pennsylvania State University, University ParkSpringer. April 18–20, 1977 71–83.
  • Miao, H., Q. Jiao, Z. Huang, and D. Jiang. 2009. Measurement of laminar burning velocities and Markstein lengths of diluted hydrogen-enriched natural gas. International Journal of Hydrogen Energy 34 (1):507–18. doi:10.1016/j.ijhydene.2008.10.050.
  • Miao, H., M. Ji, Q. Jiao, Q. Huang, and Z. Huang. 2009. Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures. International Journal of Hydrogen Energy 34 (7):3145–55. doi:10.1016/j.ijhydene.2009.01.059.
  • Nowotny, J., C. C. Sorrell, L. R. Sheppard, and T. Bak. 2005. Solar-hydrogen: environmentally safe fuel for the future. International Journal of Hydrogen Energy 30 (5):521–44. doi:10.1016/j.ijhydene.2004.06.012.
  • Öztuna, S., and M. K. Büyükakın. 2020. Effects of hydrogen enrichment of methane on diffusion flame structure and emissions in a back-pressure combustion chamber. International Journal of Hydrogen Energy 45 (10):5971–86. doi:10.1016/j.ijhydene.2019.09.187.
  • Peters, N. January 1988. Laminar flamelet concepts in turbulent combustion. In Symposium (international) on combustion, Vol. 21, No. 1 1231–1250. New York: Elsevier.
  • Peters, N. 2000. Turbulent combustion. Cambridge, UK: Cambridge University Press.
  • Pitsch, H., and N. Peters. 1998. A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combustion and Flame 114 (1–2):26–40. doi:10.1016/S0010-2180(97)00278-2.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and numerical combustion. Philadelphia: RT Edwards, Inc.
  • Pope, S. B. 1985. PDF methods for turbulent reactive flows. Progress in Energy and Combustion Science 11 (2):119–192.
  • Rahimi, S., K. Mazaheri, A. Alipoor, and A. Mohammadpour. 2023. The effect of hydrogen addition on methane-air flame in a stratified swirl burner. Energy 265:126354. doi:10.1016/j.energy.2022.126354.
  • Schefer, R. W. 2003. Hydrogen enrichment for improved lean flame stability. International Journal of Hydrogen Energy 28 (10):1131–41. doi:10.1016/S0360-3199(02)00199-4.
  • Schefer, R. W., D. M. Wicksall, and A. K. Agrawal. 2002. Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner. Proceedings of the combustion institute 29 (1):843–851. Elsivier.
  • Shchepakina, E. A., I. A. Zubrilin, A. Y. Kuznetsov, K. D. Tsapenkov, D. V. Antonov, P. A. Strizhak, and D. V. Yakushkin, A. G. Ulitichev, V. A. Dolinskiy, M. Hernandez Morales. 2023. Physical and chemical Features of hydrogen combustion and their influence on the characteristics of gas turbine combustion chambers. Applied Sciences 13 (6):3754. doi:10.3390/app13063754.
  • Tabet, F., B. Sarh, M. Birouk, and I. Gökalp. 2012. The near-field region behaviour of hydrogen-air turbulent non-premixed flame. Heat and Mass Transfer 48 (2):359–71. doi:10.1007/s00231-011-0889-2.
  • Tabet, F., B. Sarh, and I. Gökalp. 2011. Turbulent non-premixed hydrogen-air flame structure in the pressure range of 1–10 atm. International Journal of Hydrogen Energy 36 (24):15838–50. doi:10.1016/j.ijhydene.2011.08.064.
  • Veynante, D., and L. Vervisch. 2002. Turbulent combustion modeling. Progress in Energy and Combustion Science 28 (3):193–266. doi:10.1016/S0360-1285(01)00017-X.
  • Wang, H. 2016. Consistent flamelet modeling of differential molecular diffusion for turbulent non-premixed flames. Physics of Fluids 28 (3):035102. doi:10.1063/1.4942514.
  • Wang, S., and A. Fan. 2022. Numerical investigation of CH4/H2/air flame bifurcations in a micro flow reactor with controlled wall temperature profile. Combustion and Flame 241:11207. doi:10.1016/j.combustflame.2022.112070.
  • Wang, J., Z. Huang, Y. Fang, B. Liu, K. Zeng, H. Miao, and D. Jiang. 2007. Combustion behaviors of a direct-injection engine operating on various fractions of natural gas–hydrogen blends. International Journal of Hydrogen Energy 32 (15):3555–64. doi:10.1016/j.ijhydene.2007.03.011.
  • Wang, J., Z. Huang, C. Tang, H. Miao, and X. Wang. 2009. Numerical study of the effect of hydrogen addition on methane–air mixtures combustion. International Journal of Hydrogen Energy 34 (2):1084–96. doi:10.1016/j.ijhydene.2008.11.010.
  • Wu, L., N. Kobayashi, Z. Li, H. Huang, and J. Li. 2015. Emission and heat transfer characteristics of methaneehydrogen hybrid fuel laminar diffusion flame. International Journal of Hydrogen Energy 40 (9579):e9589. doi:10.1016/j.ijhydene.2015.05.096.
  • Xu, L., F. Yan, Y. Wang, and S. H. Chung. 2020. Chemical effects of hydrogen addition on soot formation in counterflow diffusion flames: Dependence on fuel type and oxidizer composition. Combustion and Flame 213:14–25. doi:10.1016/j.combustflame.2019.11.011.
  • Ziani, L., A. Chaker, K. Chetehouna, A. Malek, and B. Mahmah. 2013. Numerical simulations of non-premixed turbulent combustion of CH4–H2 mixtures using the PDF approach. International Journal of Hydrogen Energy 38 (20):8597–603. doi:10.1016/j.ijhydene.2012.11.104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.