123
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unique properties of rock salt and application of salt caverns on underground energy storage: a mini review

, , , , , , , , & ORCID Icon show all
Pages 621-635 | Received 26 Jul 2023, Accepted 21 Nov 2023, Published online: 04 Dec 2023

References

  • Bouman, E. A., M. M. Øberg, and E. G. Hertwich. 2016. Environmental impacts of balancing offshore wind power with compressed air energy storage (CAES). Energy 95:91–98. doi:10.1016/j.energy.2015.11.041.
  • Brassow, C. L. 2001. Use of solution mined salt caverns for the disposal of non-hazardous oil and gas (NOW) waste. In: C. Brassow (ed.), The 8th International Petroleum Environmental Conference, Albuquerque, USA. pp 6–9
  • Budt, M., D. Wolf, R. Span, and J. Yan. 2016. A review on compressed air energy storage: Basic principles, past milestones and recent developments. Applied Energy 170:250–68. doi:10.1016/j.apenergy.2016.02.108.
  • Caglayan, D. G., N. Weber, H. U. Heinrichs, J. Linßen, M. Robinius, P. A. Kukla, and D. Stolten. 2020. Technical potential of salt caverns for hydrogen storage in Europe. International Journal of Hydrogen Energy 45 (11):6793–805. doi:10.1016/j.ijhydene.2019.12.161.
  • Carter, N. L., and F. D. Hansen. 1983. Creep of rocksalt. Tectonophysics 92 (4):275–333. doi:10.1016/0040-1951(83)90200-7.
  • Chan, K. S., S. R. Bodner, and D. E. Munson. 2001. Permeability of WIPP salt during damage evolution and healing. International Journal of Damage Mechanics 10 (4):347–75. doi:10.1106/H3UV-1URA-AFUY-FX49.
  • Chan, K., A. Fossum, and D. Munson. 1999. Fracture and healing of rock salt related to salt caverns. Albuquerque, NM (US): Sandia National Laboratories.
  • Chen, S., A. Kumar, W. C. Wong, M.-S. Chiu, and X. Wang. 2019. Hydrogen value chain and fuel cells within hybrid renewable energy systems: Advanced operation and control strategies. Applied Energy 233-234:321–37. doi:10.1016/j.apenergy.2018.10.003.
  • Chen, X., Y. Li, Y. Shi, Y. Yu, Y. Jiang, Y. Liu, and J. Dong. 2021. Tightness and stability evaluation of salt cavern underground storage with a new fluid–solid coupling seepage model. Journal of Petroleum Science & Engineering 202:108475. doi:10.1016/j.petrol.2021.108475.
  • Chen, J., H. Peng, J. Fan, X. Zhang, W. Liu, and D. Jiang. 2020. Microscopic investigations on the healing and softening of damaged salt by uniaxial deformation from CT, SEM and NMR: Effect of fluids (brine and oil). RSC Advances 10 (5):2877–86. doi:10.1039/C9RA05866D.
  • Chen, J., S. Ren, C. Yang, D. Jiang, and L. Li. 2013. Self-healing characteristics of damaged rock salt under different healing conditions. Materials (Basel) 6 (8):3438–50. doi:10.3390/ma6083438.
  • Crotogino, F., K.-U. Mohmeyer, and R. Scharf, eds. 2001. Huntorf CAES: More than 20 years of successful operation. In SMRI Spring meeting, 1–6. Orlando, Florida, USA .
  • Desbois, G., P. Závada, Z. Schléder, and J. L. Urai. 2010. Deformation and recrystallization mechanisms in actively extruding salt fountain: Microstructural evidence for a switch in deformation mechanisms with increased availability of meteoric water and decreased grain size (Qum Kuh, central Iran). Journal of Structural Geology 32 (4):580–94. doi:10.1016/j.jsg.2010.03.005.
  • Dusseault, M. B., S. Bachu, and L. Rothenburg. 2004. Sequestration of CO2 in salt caverns. Journal of Canadian Petroleum Technology 43 (11):49–55. doi:10.2118/04-11-04.
  • Ehgartner, B. L., and S. R. Sobolik. 2006. Analysis of cavern shapes for the strategic petroleum reserve. In Sandia National Laboratories, ed. B. Ehgartner and S. Sobolik, 48. Albuquerque, New Mexico (US): Sandia Corporation.
  • Ghobadi, M. H., and R. Babazadeh. 2014. Experimental studies on the effects of cyclic Freezing–thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones. Rock Mechanics & Rock Engineering 48 (3):1001–16. doi:10.1007/s00603-014-0609-6.
  • Glendenning, I. 1976. Long-term prospects for compressed air storage. Applied Energy 2 (1):39–56. doi:10.1016/0306-2619(76)90038-6.
  • Grgic, D., F. Al Sahyouni, F. Golfier, M. Moumni, and L. Schoumacker. 2022. Evolution of gas permeability of rock salt under different loading conditions and implications on the underground hydrogen storage in salt caverns. Rock Mechanics & Rock Engineering 55 (2):691–714. doi:10.1007/s00603-021-02681-y.
  • Guo, C., L. Pan, K. Zhang, C. M. Oldenburg, C. Li, and Y. Li. 2016. Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant. Applied Energy 181:342–56. doi:10.1016/j.apenergy.2016.08.105.
  • Houben, M. E., A. Hove, C. J. Peach, and C. J. Spiers. 2013. Crack healing in rocksalt via diffusion in adsorbed aqueous films: Microphysical modelling versus experiments. Physics and Chemistry of the Earth, Parts A/B/C 64:95–104. doi:10.1016/j.pce.2012.10.001.
  • Katarzyna, C. 2020. Insight into a shape of salt storage caverns. Archives of Mining Sciences 65:363–98. doi:10.24425/ams.2020.133198.
  • Koelemeijer, P. J., C. J. Peach, and C. J. Spiers. 2012. Surface diffusivity of cleaved NaCl crystals as a function of humidity: Impedance spectroscopy measurements and implications for crack healing in rock salt. Journal of Geophysical Research: Solid Earth 117 (B1):1–15. doi:10.1029/2011JB008627.
  • Kousksou, T., P. Bruel, A. Jamil, T. El Rhafiki, and Y. Zeraouli. 2014. Energy storage: Applications and challenges. Solar Energy Materials & Solar Cells 120:59–80. doi:10.1016/j.solmat.2013.08.015.
  • Langer, M. 1993. Use of solution-mined caverns in salt for oil and gas storage and toxic waste disposal in Germany. Engineering Geology 35 (3–4):183–90. doi:10.1016/0013-7952(93)90005-W.
  • Lankof, L., K. Urbańczyk, and R. Tarkowski. 2022. Assessment of the potential for underground hydrogen storage in salt domes. Renewable and Sustainable Energy Reviews 160:112309. doi:10.1016/j.rser.2022.112309.
  • Liang, W. G., S. G. Xu, and Y. S. Zhao. 2005. Experimental study of temperature effects on physical and mechanical characteristics of salt rock. Rock Mechanics & Rock Engineering 39 (5):469–82. doi:10.1007/s00603-005-0067-2.
  • Li, L., W. Liang, H. Lian, J. Yang, and M. Dusseault. 2018. Compressed air energy storage: Characteristics, basic principles, and geological considerations. Advances in Geo-Energy Research 2 (2):135–47. doi:10.26804/ager.2018.02.03.
  • Li, P., Y. Li, X. Shi, K. Yang, X. Wei, K. Zhao, H. Ma, and C. Yang. 2023. Theoretical and numerical simulation studies of the self-stabilization capability of salt cavern roofs. Computers and Geotechnics 163:105719. doi:10.1016/j.compgeo.2023.105719.
  • Li, H., H. Ma, J. Liu, S. Zhu, K. Zhao, Z. Zheng, Z. Zeng, and C. Yang. 2023. Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China. Energy 281:128271. doi:10.1016/j.energy.2023.128271.
  • Liu, Y., Y. Li, X. Shi, H. Ma, K. Zhao, Z. Dong, B. Hou, and S. Shangguan. 2023. Creep monitoring and parameters inversion methods for rock salt in extremely deep formation. Geoenergy Science and Engineering 229:212092. doi:10.1016/j.geoen.2023.212092.
  • Luo, X., J. Wang, M. Dooner, and J. Clarke. 2015. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy 137:511–36. doi:10.1016/j.apenergy.2014.09.081.
  • Lux, K.-H. 2009. Design of salt caverns for the storage of natural gas, crude oil and compressed air: Geomechanical aspects of construction, operation and abandonment. Geological Society, London, Special Publications 313 (1):93–128. doi:10.1144/SP313.7.
  • Mansouri, H., D. J. Prior, R. Ajalloeian, and R. Elyaszadeh. 2019. Deformation and recrystallization mechanisms inferred from microstructures of naturally deformed rock salt from the diapiric stem and surface glaciers of a salt diapir in southern Iran. Journal of Structural Geology 121:10–24. doi:10.1016/j.jsg.2019.01.005.
  • Manzano-Agugliaro, F., A. Alcayde, F. G. Montoya, A. Zapata-Sierra, and C. Gil. 2013. Scientific production of renewable energies worldwide: An overview. Renewable and Sustainable Energy Reviews 18:134–43. doi:10.1016/j.rser.2012.10.020.
  • Mao, L., L. Gan, S. Zeng, M. Cai, and W. Li. 2022. Experimental study on vibration characteristics of salt cavern leaching tubing for underground natural gas storage. Journal of Fluids and Structures 115:103786. doi:10.1016/j.jfluidstructs.2022.103786.
  • Martin-Clave, C., A. Ougier-Simonin, and V. Vandeginste. 2021. Impact of second phase content on rock salt rheological behavior under cyclic mechanical conditions. Rock Mechanics & Rock Engineering 54 (10):5245–67. doi:10.1007/s00603-021-02449-4.
  • Mehta, B. 1991. First US compressed air energy storage plant status. In SMRI Fall meeting, ed. B. Mehta. Nevada: Las Vegas.
  • Moslehy, A., and K. Alshibli. 2021. Assessment of the properties of polycrystalline rock salt synthesized under nominally dry and wet conditions. Journal of Rock Mechanics and Geotechnical Engineering 13 (2):311–20. doi:10.1016/j.jrmge.2020.09.010.
  • Muhammed, N. S., B. Haq, D. Al Shehri, A. Al-Ahmed, M. M. Rahman, and E. Zaman. 2022. A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Reports 8:461–99. doi:10.1016/j.egyr.2021.12.002.
  • Nakhamkin, M., L. Andersson, E. Swensen, J. Howard, R. Meyer, R. Schainker, R. Pollak, and B. Mehta. 1992. AEC 110 MW CAES plant: Status of project. Journal of Engineering for Gas Turbines and Power 114 (4):695–700. doi:10.1115/1.2906644.
  • Ozarslan, A. 2012. Large-scale hydrogen energy storage in salt caverns. International Journal of Hydrogen Energy 37 (19):14265–77. doi:10.1016/j.ijhydene.2012.07.111.
  • Pajonpai, N., R. Bissen, S. Pumjan, and A. Henk. 2022. Shape design and safety evaluation of salt caverns for CO2 storage in northeast Thailand. International Journal of Greenhouse Gas Control 120:103773. doi:10.1016/j.ijggc.2022.103773.
  • Panwar, N. L., S. C. Kaushik, and S. Kothari. 2011. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews 15 (3):1513–24. doi:10.1016/j.rser.2010.11.037.
  • Park, B. Y., S. R. Sobolik, and C. G. Herrick. 2018. Geomechanical model calibration using field measurements for a petroleum reserve. Rock Mechanics & Rock Engineering 51 (3):925–43. doi:10.1007/s00603-017-1370-4.
  • Raju, M., and S. Kumar Khaitan. 2012. Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant. Applied Energy 89 (1):474–81. doi:10.1016/j.apenergy.2011.08.019.
  • Roberts, L. A., S. A. Buchholz, K. D. Mellegard, and U. Düsterloh. 2015. Cyclic loading effects on the creep and dilation of salt rock. Rock Mechanics & Rock Engineering 48 (6):2581–90. doi:10.1007/s00603-015-0845-4.
  • Schaber, C., P. Mazza, and R. Hammerschlag. 2004. Utility-scale storage of renewable energy. Electricity Journal 17 (6):21–29. doi:10.1016/j.tej.2004.05.005.
  • Stormont, J. C. 1997. Conduct and interpretation of gas permeability measurements in rock salt. International Journal of Rock Mechanics & Mining Sciences 34 (3–4):.e303.1–.e11. doi:10.1016/S1365-1609(97)00250-5.
  • Stormont, J. C., and J. J. K. Daemen. 1992. Laboratory study of gas permeability changes in rock salt during deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 29 (4):325–42. doi:10.1016/0148-9062(92)90510-7.
  • Tarkowski, R., B. Uliasz-Misiak, and P. Tarkowski. 2021. Storage of hydrogen, natural gas, and carbon dioxide – geological and legal conditions. International Journal of Hydrogen Energy 46 (38):20010–22. doi:10.1016/j.ijhydene.2021.03.131.
  • Ter Heege, J. H., J. H. P. De Bresser, and C. J. Spiers. 2005. Dynamic recrystallization of wet synthetic polycrystalline halite: Dependence of grain size distribution on flow stress, temperature and strain. Tectonophysics 396 (1–2):35–57. doi:10.1016/j.tecto.2004.10.002.
  • Thoms, R., and R. Gehle. 1994. Analysis of a solidified waste disposal cavern in gulf coast salt dome. In SMRI Fall meeting, ed. R. Thoms and R. Gehle. Hannover, Germany.
  • Thoms, R., and R. Gehle. 2000. A brief history of salt cavern use. In The 8th world salt symposium, ed. R. Thoms and R. Gehle. Hague, Netherlands: Elsevier.
  • Tsang, C.-F., F. Bernier, and C. Davies. 2005. Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal. International Journal of Rock Mechanics & Mining Sciences 42 (1):109–25. doi:10.1016/j.ijrmms.2004.08.003.
  • Wang, T., J. Li, G. Jing, Q. Zhang, C. Yang, and J. J. K. Daemen. 2019. Determination of the maximum allowable gas pressure for an underground gas storage salt cavern – a case study of Jintan, China. Journal of Rock Mechanics and Geotechnical Engineering 11 (2):251–62. doi:10.1016/j.jrmge.2018.10.004.
  • Wang, J., Q. Zhang, Z. Song, Y. Zhang, and X. Liu. 2021. Mechanical properties and damage constitutive model for uniaxial compression of salt rock at different loading rates. International Journal of Damage Mechanics 30 (5):739–63. doi:10.1177/1056789520983868.
  • Warren, J. K. 2006. Evaporites: Sediments, resources and hydrocarbons. Germany: Springer Science & Business Media.
  • Wu, F., R. Gao, C. Li, and J. Liu. 2023. A comprehensive evaluation of wind-PV-salt cavern-hydrogen energy storage and utilization system: A case study in Qianjiang salt cavern, China. Energy Conversion and Management 277:116633. doi:10.1016/j.enconman.2022.116633.
  • Xue, T., C. Yang, X. Shi, M. Hongling, Y. Li, X. Ge, and X. Liu. 2020. The formation mechanism of irregular salt caverns during solution mining for natural gas storage. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2020.1764151.
  • Yang, C., J. J. K. Daemen, and J.-H. Yin. 1999. Experimental investigation of creep behavior of salt rock. International Journal of Rock Mechanics & Mining Sciences 36 (2):233–42. doi:10.1016/S0148-9062(98)00187-9.
  • Yang, C., T. Wang, Y. Li, H. Yang, J. Li, D. Qu, B. Xu, Y. Yang, and J. J. K. Daemen. 2015. Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Applied Energy 137:467–81. doi:10.1016/j.apenergy.2014.07.048.
  • Yang, C., T. Wang, D. Qu, H. Ma, Y. Li, X. Shi, and J. J. K. Daemen. 2016. Feasibility analysis of using horizontal caverns for underground gas storage: A case study of Yunying salt district. Journal of Natural Gas Science & Engineering 36:252–66. doi:10.1016/j.jngse.2016.10.009.
  • Yan, Z., Z. Wang, F. Wu, and C. Lyu. 2022. Stability analysis of Pingdingshan pear-shaped multi-mudstone interbedded salt cavern gas storage. Journal of Energy Storage 56:105963. doi:10.1016/j.est.2022.105963.
  • Zhang, J., A. Hosseini Zadeh, and S. Kim. 2021. Geomechanical and energy analysis on the small- and medium-scale CAES in salt domes. Energy 221:221. doi:10.1016/j.energy.2021.119861.
  • Zhang, G., Y. Li, J. J. K. Daemen, C. Yang, Y. Wu, K. Zhang, and Y. Chen. 2015. Geotechnical feasibility analysis of compressed air energy storage (CAES) in bedded salt formations: A case study in Huai’an city, China. Rock Mechanics & Rock Engineering 48 (5):2111–27. doi:10.1007/s00603-014-0672-z.
  • Zhang, X., W. Liu, J. Chen, D. Jiang, J. Fan, J. J. K. Daemen, and W. Qiao. 2022. Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability. Energy 249:123727. doi:10.1016/j.energy.2022.123727.
  • Zhang, Z., W. Liu, Q. Guo, X. Duan, Y. Li, and T. Wang. 2022. Tightness evaluation and countermeasures for hydrogen storage salt cavern contains various lithological interlayers. Journal of Energy Storage 50:104454. doi:10.1016/j.est.2022.104454.
  • Zhao, K. 2023. Research on mechanical behavior of rock salt under rock salt under creep-fatigue. Wuhan, Hubei Province, China: University of Chinese Academy of Sciences.
  • Zhao, K., Y. Liu, Y. Li, H. Ma, W. Hou, C. Yu, H. Liu, C. Feng, and C. Yang. 2022. Feasibility analysis of salt cavern gas storage in extremely deep formation: A case study in China. Journal of Energy Storage 47:103649. doi:10.1016/j.est.2021.103649.
  • Zhao, K., H. Ma, Y. Li, P. Li, Z. Dong, X. Liu, H. Yin, C. Yang, and X. Chen. 2022. Deformation and damage evolution of rock salt under multilevel cyclic loading with constant stress intervals. Engineering Fracture Mechanics 260:108191. doi:10.1016/j.engfracmech.2021.108191.
  • Zhao, K., H. Ma, H. Li, C. Yang, P. Li, Y. Liu, H. Li, Z. Zeng, and X. Wang. 2023. Stability analysis of CAES salt caverns using a creep-fatigue model in Yunying salt district, China. Journal of Energy Storage 62:106856. doi:10.1016/j.est.2023.106856.
  • Zhao, K., H. Ma, J. Zhou, H. Yin, P. Li, A. Zhao, X. Shi, and C. Yang. 2022. Rock salt under cyclic loading with high-stress intervals. Rock Mechanics & Rock Engineering 55 (7):4031–49. doi:10.1007/s00603-022-02848-1.
  • Zhao, K., C. Yang, H. Ma, and J. J. K. Daemen. 2023. A creep-fatigue model of rock salt and its application to the deformation analysis of CAES salt caverns. Computers and Geotechnics 156:105311. doi:10.1016/j.compgeo.2023.105311.
  • Žlender, B., P. Jelušič, and D. Boumezerane. 2013. The feasibility analysis of underground gas storage caverns. Engineering Structures 55:16–25. doi:10.1016/j.engstruct.2013.01.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.