97
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The thermal behavior during the co-combustion of bituminous coal and oil palm trunk hydrochars

, , , &
Pages 706-718 | Received 26 Apr 2023, Accepted 23 Nov 2023, Published online: 04 Dec 2023

References

  • Barzegar, R., A. Yozgatligil, and A. T. Atimtay. 2022. Co-combustion of high and low ash lignites with raw and torrefied biomass under air and oxy-fuel combustion atmospheres. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2022.2038313.
  • Barzegar, R., A. Yozgatligil, H. Olgun, and A. T. Atimtay. 2020. TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. Journal of the Energy Institute 93 (3):889–98. doi:10.1016/j.joei.2019.08.001.
  • Boumanchar, I., Y. Chhiti, F. E. M. Alaoui, M. Elkhouakhi, A. Sahibed-Dine, F. Bentiss, C. Jama, and M. Bensitel. 2019. Investigation of (co)-combustion kinetics of biomass, coal and municipal solid wastes. Waste Management 97:10–18.
  • Buratti, C., M. Barbanera, P. Bartocci, and F. Fantozzi. 2015. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion. Bioresource Technology 186:154–62. doi:10.1016/j.biortech.2015.03.041.
  • Chen, C., W. Liang, F. Fan, and C. Wang. 2021. The effect of temperature on the properties of hydrochars obtained by hydrothermal carbonization of waste camellia oleifera shells. ACS Omega 6 (25):16546–52. doi:10.1021/acsomega.1c01787.
  • Chen, G., Y. Wang, F. Liu, B. Yan, Z. Cheng, and W. Ma. 2020. Comparison of combustion kinetics of the biomass hydrolysis residue with raw biomass materials. Energy Fuels 34 (2):1193–201. doi:10.1021/acs.energyfuels.9b02143.
  • Dai, B., X. Wu, J. Zhang, Y. Ninomiya, D. Yu, and L. Zhang. 2020. Characteristics of iron and sulphur in high-ash lignite (Pakistani lignite) and their influence on long-term T23 tube corrosion under super-critical coal-fired boiler conditions. Fuel 264:116855. doi:10.1016/j.fuel.2019.116855.
  • Fernandez, A., L. Rodriguez-Ortiz, D. Asensio, R. Rodriguez, and G. Mazza. 2020. Kinetic analysis and thermodynamics properties of air/steam gasification of agricultural waste. Journal of Environmental Chemical Engineering 8 (4):103829. doi:10.1016/j.jece.2020.103829.
  • Fernandez, A., A. Saffe, G. Mazza, and R. Rodriguez. 2017a. Kinetic analysis of regional agro-industrial waste combustion. Biofuels 8 (1):71–80. doi:10.1080/17597269.2016.1200865.
  • Fernandez, A., A. Saffe, G. Mazza, and R. Rodriguez. 2017b. Nonisothermal drying kinetics of biomass fuels by thermogravimetric analysis under oxidative and inert atmosphere. Drying Technology 35 (2):163–72. doi:10.1080/07373937.2016.1163265.
  • Fernandez, A., P. Sette, M. Echegaray, J. Soria, D. Salvatori, G. Mazza, and R. Rodriguez. 2023. Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes. Biomass Conversion and Biorefinery 13 (14):12509–26. doi:10.1007/s13399-021-02197-z.
  • Galina, N. R., C. M. R. Luna, G. L. A. F. Arce, and I. Avila. 2019. Comparative study on combustion and oxy-fuel combustion environments using mixtures of coal with sugarcane bagasse and biomass sorghum bagasse by thermogravimetric analysis. Journal of Energy Institute 92 (3):741–54. doi:10.1016/j.joei.2018.02.008.
  • Garcia, E., I. F. Ejim, and H. Liu. 2022. Thermogravimetric analysis of co-combustion of a bituminous coal and coffee industry by-products. Thermochimica Acta 715:179296. doi:10.1016/j.tca.2022.179296.
  • Gil, M. V., D. Casal, C. Pevida, J. J. Pis, and F. Rubiera. 2010. Thermal behavior and kinetics of coal/biomass blends during co-combustion. Bioresource Technology 101 (14):5601–08. doi:10.1016/j.biortech.2010.02.008.
  • Guo, Y., F. Guo, L. Zhou, Z. Guo, Z. Miao, H. Liu, X. Zhang, J. Wu, and Y. Zhang. 2021. Investigation on co-combustion of coal gasification fine slag residual carbon and sawdust char blends: Physiochemical properties, combustion characteristic and kinetic behavior. Fuel 292:120387. doi:10.1016/j.fuel.2021.120387.
  • Guo, F., Y. He, A. Hassanpour, J. Gardy, and Z. Zhong. 2020. Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal. Energy 197:117147. doi:10.1016/j.energy.2020.117147.
  • Idris, S. S., N. A. Rahman, and K. Ismail. 2012. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresource Technology 123:581–91. doi:10.1016/j.biortech.2012.07.065.
  • International Energy Agency, IEA. 2022. World Energy outlook 2022.
  • Jayaraman, K., M. V. Kok, and I. Gokalp. 2017. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renewable Energy 101:293–300. doi:10.1016/j.renene.2016.08.072.
  • Jayaraman, K., M. V. Kok, and I. Gokalp. 2020. Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach. Energy 204:117905. doi:10.1016/j.energy.2020.117905.
  • Laouge, Z. B., and H. Merdun. 2021. Investigation of thermal behavior of pine sawdust and coal during co-pyrolysis and co-combustion. Energy 231:120895. doi:10.1016/j.energy.2021.120895.
  • Lu, J. J., and W. H. Chen. 2015. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy 160:49–57. doi:10.1016/j.apenergy.2015.09.026.
  • Mohammed, I. S., R. Na, K. Kushima, and N. Shimizu. 2020. Investigating the effect of processing parameters on the products of hydrothermal carbonization of corn stover. Sustainability 12 (12):5100. doi:10.3390/su12125100.
  • Nudri, N. A., R. T. Bachmann, W. Ghani, D. N. K. Sum, and A. A. Azni. 2020. Characterization of oil palm trunk biocoal and its suitability for solid fuel applications. Biomass Conversion and Biorefinery 10 (1):45–55. doi:10.1007/s13399-019-00419-z.
  • Park, S. W., and C. H. Jang. 2012. Effects of pyrolysis temperature on changes in fuel characteristics of biomass char. Energy 39 (1):187–95. doi:10.1016/j.energy.2012.01.031.
  • Qureshi, S. S., M. J. Premchand, R. Saeed, S. Abro, S. A. Mazari, N. M. Mubarak, M. T. H. Siddiqui, H. A. Baloch, and S. Nizamuddin. 2021. Hydrothermal carbonization of oil palm trunk via taguchi method. The Korean Journal of Chemical Engineering 38 (4):797–806. doi:10.1007/s11814-021-0753-0.
  • Sarvaramini, A., G. P. Assima, G. Beaudoin, and F. Larachi. 2014. Biomass torrefaction and CO2 capture using mining wastes-A new approach for reducing greenhouse gas emissions of co-firing plants. Fuel 115:749–57. doi:10.1016/j.fuel.2013.07.087.
  • Siddiqi, M. H., X. Liu, T. Qureshi, A. N. Tabish, S. Nawaz, and T. Iqbal. 2020. Performance analysis of bio-fuel blends for clean energy production: Thermogravimetric analysis. Journal of Cleaner Production 273:122936. doi:10.1016/j.jclepro.2020.122936.
  • Soh, M., D. S. Khaerudini, J. J. Chew, and J. Sunarso. 2021. Wet torrefaction of empty fruit bunches (EFB) and oil palm trunks (OPT): Effects of process parameters on their physicochemical and structural properties. South African Journal of Chemical Engineering 35:126–36. doi:10.1016/j.sajce.2020.09.004.
  • Song, F., H. Mehedi, C. Liang, J. Meng, Z. Chen, and F. Shi. 2021. Review of transition paths for coal-fired power plants. Global Energy Interconnection 4 (4):354–70. doi:10.1016/j.gloei.2021.09.007.
  • Srivaro, S., N. Matan, and F. Lam. 2018. Property gradients in oil palm trunk (Elaeis guineensis). Journal of Wood Science 64 (6):709–19. doi:10.1007/s10086-018-1750-8.
  • Sukiran, M. A., F. Abnisa, W. M. A. Wan Daud, N. Abu Bakar, and S. K. Loh. 2017. A review of torrefaction of oil palm solid wastes for biofuel production. Energy Conversion and Management 149:101–20. doi:10.1016/j.enconman.2017.07.011.
  • Toptas, A., Y. Yildirim, G. Duman, and J. Yanik. 2015. Combustion behavior of different kinds of torrefied biomass and their blends with lignite. Bioresource Technology 177:328–36. doi:10.1016/j.biortech.2014.11.072.
  • Torres-Sciancalepore, R., D. Asensio, D. Nassini, A. Fernandez, R. Rodriguez, G. Fouga, and G. Mazza. 2022. Assessment of the behavior of Rosa rubiginosa seed waste during slow pyrolysis process towards complete recovery: Kinetic modeling and product analysis. Energy Conversion and Management 272:116340. doi:10.1016/j.enconman.2022.116340.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520 (1–2):1–19. doi:10.1016/j.tca.2011.03.034.
  • Wang, Y., B. Yan, Y. Wang, J. Zhang, X. Chen, and R. J. M. Bastiaans. 2021. A comparison of combustion properties in biomass–coal blends using characteristic and kinetic analyses. International Journal of Environmental Research and Public Health 18 (24):12980. doi:10.3390/ijerph182412980.
  • Xie, Z. Q., and X. Q. Ma. 2013. The thermal behaviour of the co-combustion between paper sludge and rice straw. Bioresource Technology 146:611–18. doi:10.1016/j.biortech.2013.07.127.
  • Zhang, X., Y. Li, X. Zhang, P. Ma, and X. Xing. 2023. Co-combustion of municipal solid waste and hydrochars under non-isothermal conditions: Thermal behaviors, gaseous emissions and kinetic analyses by TGA–FTIR. Energy 265:126373. doi:10.1016/j.energy.2022.126373.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.