154
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Verification of the oxygen consumption rate of the remaining coal in the gob by research and experiment

ORCID Icon, , , , , , & show all
Pages 773-788 | Received 26 Jul 2023, Accepted 21 Nov 2023, Published online: 06 Dec 2023

References

  • Aprianti, N., M. Faizal, M. Said, S. Nasir, and A. Fudholi. 2023. Gasification kinetic and thermodynamic parameters of fine coal using thermogravimetric analysis. Energy 268:126666. doi:10.1016/j.energy.2023.126666.
  • Cai, J., S. Yang, W. Zheng, W. Song, and R. Gupta. 2021. Dissect the capacity of low-temperature oxidation of coal with different metamorphic degrees. Fuel 292:120256. doi:10.1016/j.fuel.2021.120256.
  • Deng, J., Y. Xiao, Q. Li, J. Lu, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 157:261–69. doi:10.1016/j.fuel.2015.04.063.
  • Feng, J., K. Le, Y. Liu, and Q. Hou. 2001. Effect of fine coal particle size on its combustion characteristics. Journal of Beijing University of Science and Technology 460–462. doi:10.13374/j.issn1001-053x.2001.05.020.
  • Jiang, X., H. Yang, Y. Li, and H. Liu. 2003. Fractal analysis of coal particle size. Journal of Coal Science 46:414–418. doi:10.13347/j.cnki.mkaq.2015.01.006.
  • Kong, B., Z. Li, Y. Yang, Z. Liu, and D. Yan. 2017. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environmental Science and Pollution Research 24 (30):23453–23470. doi:10.1007/s11356-017-0209-6.
  • Li, H., X. Chen, C.-M. Shu, Q. Wang, T. Ma, and B. Laiwang. 2019. Effects of oxygen concentration on the macroscopic characteristic indexes of high-temperature oxidation of coal. Journal of the Energy Institute 92 (3):554–566. doi:10.1016/j.joei.2018.04.003.
  • Li, L., B. Qin, J. Liu, Y.-K. Leong, W. Li, J. Zeng, D. Ma, and H. Zhuo. 2021. Influence of airflow movement on methane migration in coal mine goafs with spontaneous coal combustion. Process Safety and Environmental Protection 156:405–16. doi:10.1016/j.psep.2021.10.015.
  • Li, L., B. Qin, D. Ma, H. Zhuo, H. Liang, and A. Gao. 2018. Unique spatial methane distribution caused by spontaneous coal combustion in coal mine goafs: An experimental study. Process Safety and Environmental Protection 116:199–207. doi:10.1016/j.psep.2018.01.014.
  • Liu, Q., L. Sun, Z. Liu, G. Wang, and J. Ma. 2023. Effects of air volume and pre-oxidation on re-ignition characteristics of bituminous coal. Energy 265:126124. doi:10.1016/j.energy.2022.126124.
  • Liu, W., and Y. Qin. 2017. A quantitative approach to evaluate risks of spontaneous combustion in longwall gobs based on CO emissions at upper corner. Fuel 210:359–70. doi:10.1016/j.fuel.2017.08.083.
  • Liu, Y., H. Wen, J. Guo, Y. Jin, S. Fan, G. Cai, and R. Liu. 2023. Correlation between oxygen concentration and reaction rate of low-temperature coal oxidation: A case study of long-flame coal. Energy 275:127483. doi:10.1016/j.energy.2023.127483.
  • Lü, H.-F., J. Deng, D.-J. Li, F. Xu, Y. Xiao, and C.-M. Shu. 2021. Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process. Energy 227:120431. doi:10.1016/j.energy.2021.120431.
  • Lu, W., J. Li, J. Li, Q. He, W. Hao, and Z. Li. 2021. Oxidative kinetic characteristics of dried soaked coal and its related spontaneous combustion mechanism. Fuel 305:121626. doi:10.1016/j.fuel.2021.121626.
  • Ma, T., X.-W. Zhai, Y. Xiao, Y.-E. Bai, K. Shen, B.-B. Song, L. Hao, L.-F. Ren, and X.-K. Chen. 2023. Study on the influence of key active groups on gas products in spontaneous combustion of coal. Fuel 344:128020. doi:10.1016/j.fuel.2023.128020.
  • Ören, Ö., C. Şensöğüt, O. J. I. J. O. M. Sahbaz, and Reclamation, Environment. 2020. Empirical modelling of oxidation behaviours of coals stored under different conditions. International Journal of Mining, Reclamation and Environment 34 (3):159–178 . doi:10.1080/17480930.2018.1550038.
  • Qi, X.-Y., D.-M. Wang, X.-X. Zhong, and Y.-L. Xu. 2009. Oxygen consumption of coal at low temperatures. Procedia Earth and Planetary Science 1 (1):366–370. doi:10.1016/j.proeps.2009.09.058.
  • Qi, X., D. Wang, X. Zhong, J. Gu, and T. Xu. 2010. Characteristics of oxygen consumption of coal at programmed temperatures. Mining Science and Technology (China) 20 (3):372–377. doi:10.1016/S1674-5264(09)60210-6.
  • Qin, Y., W. Liu, C. Yang, Z. Fan, L. Wang, and G. Jia. 2012. Experimental study on oxygen consumption rate of residual coal in goaf. Safety Science 50 (4):787–791. doi:10.1016/j.ssci.2011.08.033.
  • Qin, Y., H. Song, W. Liu, S. Xu, and X. Xin. 2015. Experimental research on the influence of coal particle dispersion on spontaneous combustion of residual coal. Coal Mine Safety 46:22–25. doi:10.13347/j.cnki.mkaq.2015.01.006.
  • Rong-Kun, P., L. Chang, Y. Ke, and Y. Ming-Gao. 2011. Distribution regularity and numerical simulation study on the coal spontaneous combustion “three zones” under the ventilation type of ventilation type of Ч + J. Procedia Engineering 26:704–11. doi:10.1016/j.proeng.2011.11.2226.
  • Shi, Q., W. Jiang, B. Qin, M. Hao, and Z. He. 2023. Effects of oxidation temperature on microstructure and spontaneous combustion characteristics of coal: A case study of shendong long-flame coal. Energy 284:128631. doi:10.1016/j.energy.2023.128631.
  • Song, Y., S. Yang, Q. Xu, J. Cai, X. Hu, N. Sang, and Z. Zhang. 2019. Effect of low-temperature oxidation of coal with different metamorphic degrees on coal quality characteristics and outburst comprehensive index. Process Safety and Environmental Protection 132:142–52. doi:10.1016/j.psep.2019.10.009.
  • Song, Z., and C. Kuenzer. 2014. Coal fires in China over the last decade: A comprehensive review. International Journal of Coal Geology 133:72–99. doi:10.1016/j.coal.2014.09.004.
  • Sujanti, W., D.-K. Zhang, and X. D. Chen. 1999. Low-temperature oxidation of coal studied using wire-mesh reactors with both steady-state and transient methods. Combustion and Flame 117 (3):646–651. doi:10.1016/S0010-2180(98)00139-4.
  • Taraba, B., and Z. Michalec. 2011. Effect of longwall face advance rate on spontaneous heating process in the gob area – CFD modelling. Fuel 90 (8):2790–2797. doi:10.1016/j.fuel.2011.03.033.
  • Wang, J., Y. Zhang, S. Xue, J. Wu, Y. Tang, and L. Chang. 2018. Assessment of spontaneous combustion status of coal based on relationships between oxygen consumption and gaseous product emissions. Fuel Processing Technology 179:60–71. doi:10.1016/j.fuproc.2018.06.015.
  • Wang, K., X. Liu, J. Deng, Y. Zhang, and S. Jiang. 2019. Effects of pre-oxidation temperature on coal secondary spontaneous combustion. Journal of Thermal Analysis and Calorimetry 138 (2):1363–1370. doi:10.1007/s10973-019-08138-3.
  • Xia, T., F. Zhou, J. Liu, J. Kang, and F. Gao. 2014. A fully coupled hydro-thermo-mechanical model for the spontaneous combustion of underground coal seams. Fuel 125:106–15. doi:10.1016/j.fuel.2014.02.023.
  • Yan, H., B. Nie, F. Kong, Y. Liu, P. Liu, Y. Wang, Z. Chen, F. Yin, J. Gong, S. Lin, et al. 2023. Experimental investigation of coal particle size on the kinetic properties of coal oxidation and spontaneous combustion limit parameters. Energy 270:126890. doi:10.1016/j.energy.2023.126890.
  • Yan, H., B. Nie, P. Liu, Z. Chen, F. Yin, J. Gong, S. Lin, X. Wang, F. Kong, and Y. Hou. 2022. Experimental investigation and evaluation of influence of oxygen concentration on characteristic parameters of coal spontaneous combustion. Thermochimica Acta 717:179345. doi:10.1016/j.tca.2022.179345.
  • Yin, W.-T., and Z.-Y. Song. 2019. An innovative method to calculate oxygen consumption rate. Journal of Central South University 26:873–880. doi:10.1007/s11771-019-4056-0.
  • Zhang, L., and T. Ponomarenko. 2023. Directions for sustainable development of China’s coal industry in the Post-Epidemic Era. %J Sustainability 15 (8):6518. doi:10.3390/su15086518.
  • Zhang, Y., L. Chen, J. Zhao, J. Deng, and H. Yang. 2019. Evaluation of the spontaneous combustion characteristics of coal of different metamorphic degrees based on a temperature-programmed oil bath experimental system. Journal of Loss Prevention in the Process Industries 60:17–27. doi:10.1016/j.jlp.2019.03.007.
  • Zhang, Y., J. Wu, L. Chang, J. Wang, and Z. Li. 2013. Changes in the reaction regime during low-temperature oxidation of coal in confined spaces. Journal of Loss Prevention in the Process Industries 26 (6):1221–1229. doi:10.1016/j.jlp.2013.05.008.
  • Zhang, Y., Y. Zhang, Y. Li, Q. Li, J. Zhang, and C. Yang. 2020. Study on the characteristics of coal spontaneous combustion during the development and decaying processes. Process Safety and Environmental Protection 138:9–17. doi:10.1016/j.psep.2020.02.038.
  • Zhao, X., G. Dai, R. Qin, L. Zhou, J. Li, and J. Li. 2023. Study on oxidation kinetics of low-rank coal during the spontaneous combustion latency. Fuel 339:127441. doi:10.1016/j.fuel.2023.127441.
  • Zheng, Y., Q. Li, G. Zhang, Y. Zhao, P. Zhu, X. Ma, and X. Liu. 2020. Effect of multi-component gases competitive adsorption on coal spontaneous combustion characteristics under goaf conditions. Fuel Processing Technology 208:106510. doi:10.1016/j.fuproc.2020.106510.
  • Zhuo, H., B. Qin, Q. Qin, and Z. Su. 2019. Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams. Process Safety and Environmental Protection 131:246–54. doi:10.1016/j.psep.2019.09.011.
  • Zuo, Q. L., G. Z. Wang, and X. C. Gao. 2012. Experimental study on influence function of particle size at low-temperature oxidation of the coal. Applied Mechanics and Materials 214:515–519. doi:10.4028/www.scientific.net/AMM.214.515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.