122
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advanced techniques for enhancing solar distiller productivity: a review

, ORCID Icon, , , &
Pages 736-772 | Received 05 Jul 2023, Accepted 23 Nov 2023, Published online: 06 Dec 2023

References

  • Abdallah, S., M. M. Abu-Khader, and O. Badran. 2009. Effect of various absorbing materials on the thermal performance of solar stills. Desalination 242 (1–3):128–37. doi:10.1016/j.desal.2008.03.036.
  • Abd Elbar, A. R., and H. Hassan. 2019. Experimental investigation on the impact of thermal energy storage on the solar still performance coupled with PV module via new integration. Solar Energy 184:584–593. doi:10.1016/j.solener.2019.04.042.
  • Abdelgaied, M., M. F. Seleem, M. Mahgoub Bassuoni, and A. M. Khaira. 2023. Experimental Investigation of the Innovative Small Hybrid Desalination Plant Powered by PVT Panel for Remote Regions. Journal of Engineering Research 7 (1):130–135.
  • Abdelgaied, M., Y. Zakaria, A. E. Kabeel, and F. A. Essa. 2021. Improving the tubular solar still performance using square and circular hollow fins with phase change materials. Journal of Energy Storage 38:102564. doi:10.1016/j.est.2021.102564.
  • Abdullah, A. S. 2013. Improving the performance of stepped solar still, Desalination 319. Desalination 319:60–65. doi:10.1016/j.desal.2013.04.003.
  • Abdullah, A. S., A. Alarjani, M. M. Abou Al-Sood, Z. M. Omara, A. E. Kabeel, and F. A. Essa. 2019. Rotating-wick solar still with mended evaporation technics: Experimental approach. Alexandria Engineering Journal 58 (4):1449–59. doi:10.1016/j.aej.2019.11.018.
  • Abdullah, A. S., F. A. Essa, Z. M. Omara, and M. A. Bek. 2018. Performance evaluation of a humidification–dehumidification unit integrated with wick solar stills under different operating conditions. Desalination 441:52–61. doi:10.1016/j.desal.2018.04.024.
  • Abdullah, A. S., Z. O. Omara, F. A. Essa, M. M. Younes, S. Shanmugan, M. Abdelgaied, M. I. Amro, A. E. Kabeel, and W. M. Farouk. 2021. Improving the performance of trays solar still using wick corrugated absorber, nano-enhanced phase change material and photovoltaics-powered heaters. Journal of Energy Storage 40:102782. doi:10.1016/j.est.2021.102782.
  • Abed, F. M., A. H. Ahmed, K. Hasanuzzaman, I. Kumar, and N. M. Hamaad. 2022. Experimental investigation on the effect of using chemical dyes on the performance of single-slope passive solar still. Solar Energy 233:71–83. doi:10.1016/j.solener.2021.12.060.
  • Abu-Arabi, M., Y. Zurigat, H. Al-Hinai, and S. Al-Hiddabi. 2002. Modeling and performance analysis of a solar desalination unit with double-glass cover cooling. Desalination 143 (2):173–82. doi:10.1016/S0011-9164(02)00238-2.
  • Abu-Hijleh, B. A. K. 1996. Enhanced solar still performance using water film cooling of the glass cover. Desalination 107 (3):235–44. doi:10.1016/S0011-9164(96)00165-8.
  • Adak, S., N. Mandal, A. Mukhopadhyay, P. P. Maity, and S. Sen. 2023. Current state and prediction of future global climate change and variability in terms of CO2 levels and temperature. In Enhancing resilience of dryland agriculture under changing climate: Interdisciplinary and convergence approaches, eds Naorem, A. and Machwal, D., 15–43. Singapore: Springer Nature Singapore.
  • Agrawal, A., and R. S. Rana. 2019. Theoretical and experimental performance evaluation of single-slope single-basin solar still with multiple V-shaped floating wicks. Heliyon 5 (4):01525. doi:10.1016/j.heliyon.2019.e01525.
  • Ahmed, S. T., and K. A. Abass KI. 2008. Improving water distillation using a domestic solar water heater. Engineering and Technology 26 (5):23–33.
  • Akash, B. A., M. S. Mohsen, and W. Nayfeh. 2000. Experimental study of the basin type solar still under local climate conditions. Energy Conversion and Management 41 (9):883–90. doi:10.1016/S0196-8904(99)00158-2.
  • Akash, B. A., M. S. Mohsen, O. Osta, and Y. Elayan. 1998. Experimental evaluation of a single-basin solar still using different absorbing materials. Renewable Energy 14 (1–4):307–310. doi:10.1016/S0960-1481(98)00082-2.
  • Alani, W. K., J. Zheng, M. A. Fayad, and L. Lei. 2022. Enhancing the fuel saving and emissions reduction of light-duty vehicle by a new design of air conditioning worked by solar energy. Case Studies in Thermal Engineering 30:101798. doi:10.1016/j.csite.2022.101798.
  • Alawad, S. M., R. B. Mansour, F. A. Al-Sulaiman, and S. Rehman. 2023. Renewable energy systems for water desalination applications: A comprehensive review. Energy Conversion and Management 286:117035. doi:10.1016/j.enconman.2023.117035.
  • Alawee, W. H., H. A. Dhahad, and T. A. Mohamed. 2018. An experimental study on improving the performance of a double slope solar, agric. Agriculture and Agricultural Science Procedia: 1-10.
  • Al-Doori, G. F. L., I. S. Moosa, and A. A. M. Saleh. 2019. Enhanced productivity of double-slope solar still using local rocks, int. International Journal of Smart Grid and Clean Energy 8:307–12. doi:10.12720/sgce.8.3.307-312.
  • Al-Ghezi, M. K., B. K. Mahmoud, T. Alnasser, and M. T. Chaichan. 2022. A Comparative Study of Regression Models and Meteorological Parameters to Estimate the Global Solar Radiation on a Horizontal Surface for Baghdad City, Iraq. International Journal of Renewable Energy Development 11 (1):71–81. doi:10.14710/ijred.2022.38493.
  • Ali, I., S. M. Ali, and T. R. Siddhartha. 2012. Analysis of double slope single basin solar still using photo catalysts. International Journal of Advanced Research and Technology 1:1–9.
  • Allouhi, A., S. Rehman, M. S. Buker, and Z. Said. 2023. Recent technical approaches for improving energy efficiency and sustainability of PV and PV-T systems: A comprehensive review. Sustainable Energy Technologies and Assessments 56:103026. doi:10.1016/j.seta.2023.103026.
  • Al-Molhem, Y. A., and M. A. Eltawil. 2020. Enhancing the double-slope solar still performance using simple solar collector and floatable black wicks. Environmental Science and Pollution Research 27 (28):35078–98. doi:10.1007/s11356-020-09509-2.
  • Al-Qadami, E. H. H., A. S. Abdurrasheed, Z. Mustaffa, Y. H. M. Amran, and K. W. Yusof. 2020. Productivity enhancement of a double slope solar still coupled with a solar system. Journal of Ecological Engineering 21 (4):255–63. doi:10.12911/22998993/118293.
  • Appadurai, M., and V. Velmurugan. 2015. Performance analysis of fin type solar still integrated with fin type mini solar pond. Sustainable Energy Technologies and Assessments 9:30–36. doi:10.1016/j.seta.2014.11.001.
  • Arjunan, T. V., H. Ş. Aybar, and N. Nedunchezhian. 2009. Status of solar desalination in India, Renew. Sustain. Renewable and Sustainable Energy Reviews 13 (9):2408–18. doi:10.1016/j.rser.2009.03.006.
  • Arunkumar, T., D. Denkenberger, A. Ahsan, and R. Jayaprakash. 2013. The augmentation of distillate yield by using concentrator coupled solar still with phase change material. Desalination 314:189–92. doi:10.1016/j.desal.2013.01.018.
  • Asadabadi, M. J. R., and M. Sheikholeslami. 2022. Impact of utilizing hollow copper circular fins and glass wool insulation on the performance enhancement of pyramid solar still unit: An experimental approach. Solar Energy 241:564–75. doi:10.1016/j.solener.2022.06.029.
  • Assael, M. J., C. F. Chen, I. Metaxa, and W. A. Wakeham. 2004. Thermal conductivity of suspensions of carbon nanotubes in water. International Journal of Thermophysics 25 (4):971–85. doi:10.1023/B:IJOT.0000038494.22494.04.
  • Attia, M. E. H., M. Abdelgaie, A. Khelifa, and M. M. Abdel-Aziz. 2023. Experimental study on energy and exergy assessments of a new PV system with a concave cover for active cooling and self-cleaning. Renewable Energy Focus 42:100512. doi:10.1016/j.ref.2023.100512.
  • Attia, M. E. H., Z. Driss, A. M. Manokar, and R. Sathyamurthy. 2020. Effect of aluminum balls on the productivity of solar distillate. Journal of Energy Storage 30:101466. doi:10.1016/j.est.2020.101466.
  • Babalola, T. A. 2015. Effect of water depth and temperature on the productivity of a double slope solar still. Journal of Energy & Natural Resources 4 (1):1. doi:10.11648/j.jenr.20150401.11.
  • Badran, O. O. 2007. Experimental study of the enhancement parameters on a single slope solar still productivity. Desalination 209 (1–3):136–43. doi:10.1016/j.desal.2007.04.022.
  • Badran, O., A. Alahmer, F. A. Hamad, Y. El-Tous, G. Al-Marahle, and H. M. Al-Ahmadi. 2023. Enhancement of solar distiller performance by photovoltaic heating system. International Journal of Thermofluids 18:100315. doi:10.1016/j.ijft.2023.100315.
  • Bagheri, A., N. Esfandiari, and B. Honarvar. 2021. Experimental investigation of the effect of using the cylindrical parabolic collector, different solar panels and their cooling on seawater desalination in double-slope solar still, Energy sources, Part a recover. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 43 (1):107–19. doi:10.1080/15567036.2019.1623947.
  • Bahaa, S., E. F. Abdelmonem, A. Ayman, A. Mishal, P. Hitesh, A. Asif, and S. Sengottiyan. 2022. Investigating the performance of dish solar distiller with phase change material mixed with Al2O3 nanoparticles under different water depths. Environmental Science and Pollution Research 29 (19):28115–28126. doi:10.1007/s11356-021-18295-4.
  • Bait, O. 2019. Exergy, environ–economic and economic analyses of a tubular solar water heater assisted solar still. Journal of Cleaner Production 212:630–46. doi:10.1016/j.jclepro.2018.12.015.
  • Bataineh, K. M., and M. A. Abbas. 2020. Performance analysis of solar still integrated with internal reflectors and fins. Solar Energy 205:22–36. doi:10.1016/j.solener.2020.04.059.
  • Beggas, A., M. Abdelgaied, M. E. H. Attia, A. S. Abdulla, and M. M. Abdel-Aziz. 2023. Improving the freshwater productivity of hemispherical solar distillers using waste aluminum as store materials. Journal of Energy Storage 60:106692. doi:10.1016/j.est.2023.106692.
  • Behura, A., and H. K. Gupta. 2021. Use of nanoparticle-embedded phase change material in solar still for productivity enhancement. Materials Today: Proceedings 45:3904–3907. doi:10.1016/j.matpr.2020.06.285.
  • Ben Amor, H., A. Elaoud, B. Salah, and K. Elmoueddeb. 2017. Effect of magnetic Treatment on surface tension and water evaporation. International Journal of Industrial Engineering 5:25.
  • Bhargva, M., M. Sharma, A. Yadav, N. K. Batra, and R. K. Behl. 2023. Productivity augmentation of a solar still with rectangular fins and bamboo cotton wick. Journal of Solar Energy Research 8 (2):1410–1416.
  • Boukar, M., and A. Harmim. 2001. Effect of climatic conditions on the performance of a simple basin solar still: A comparative study. Desalination 137 (1–3):15–22. doi:10.1016/S0011-9164(01)00199-0.
  • Caldera, U., and C. Breyer. 2023. Afforesting arid land with renewable electricity and desalination to mitigate climate change. Nature Sustainability 6 (5):526–538. doi:10.1038/s41893-022-01056-7.
  • Caturwati, N. K., I. Rosyadi, Y. Yusuf, and E. T. Saputra. 2022. Lauric acid as an energy storage material to increase distillation solar productivity in Indonesia. Materials science forum, Vol. 1057, 144–151.
  • Chaichan, M. T., K. I. Abaas, and H. A. Kazem. 2016. Design and assessment of solar concentrator distillating system using phase change materials (PCM) suitable for desertic weathers. Desalination and Water Treatment 57 (32):14897–907. doi:10.1080/19443994.2015.1069221.
  • Chaichan, M. T., and H. A. Kazem. 2015a. Using aluminium powder with PCM (paraffin wax) to enhance single slope solar water distillation productivity in Baghdad - Iraq Winter weathers. International Journal of Renewable Energy Research (IJRER) 5 (1):251–257.
  • Chaichan, M. T., and H. A. Kazem. 2015b. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM). Case Studies in Thermal Engineering 5:151–59. doi:10.1016/j.csite.2015.03.009.
  • Chaichan, M. T., and H. A. Kazem. 2018. Single slope solar distillator productivity improvement using phase change material and Al2O3 nanoparticle. Solar Energy 164:370–81. doi:10.1016/j.solener.2018.02.049.
  • Chaichan, M. T., H. A. Kazem, A. H. Al-Waeli, S. A. Mohammed, Z. M. Omara, and K. Sopian. 2023. Performance enhancement of solar distillation system works in harsh weather conditions: An experimental study. Thermal Science and Engineering Progress 43:101981.‏. doi:10.1016/j.tsep.2023.101981.
  • Chang, K. T., and C. I. Weng. 2006. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. Journal of Applied Physics 100 (4):1–6. doi:10.1063/1.2335971.
  • Chibowski, E., A. Szcześ, and L. Hołysz. 2018. Influence of magnetic field on evaporation rate and surface tension of water. Colloids and Interfaces 2 (4):68. doi:10.3390/colloids2040068.
  • Cooper, P. I. 1969a. The absorption of radiation in solar stills, sol. Solar Energy 12 (3):333–46. doi:10.1016/0038-092X(69)90047-4.
  • Cooper, P. I. 1969b. Digital simulation of transient solar still processes. Solar Energy 12 (3):313–31. doi:10.1016/0038-092X(69)90046-2.
  • Dar, J., and M. Asif. 2023. Environmental feasibility of a gradual shift from fossil fuels to renewable energy in India: Evidence from multiple structural breaks cointegration. Renewable Energy 202:589–601. doi:10.1016/j.renene.2022.10.131.
  • Dashtban, M., and F. F. Tabrizi. 2011. Thermal analysis of a weir-type cascade solar still integrated with PCM storage. Desalination 279 (1–3):415–22. doi:10.1016/j.desal.2011.06.044.
  • Dev, R., H. N. Singh, and G. N. Tiwari. 2011. Characteristic equation of double slope passive solar still. Desalination 267 (2–3):261–66. doi:10.1016/j.desal.2010.09.037.
  • Dharamveer, D., S. Samsher, and A. Kumar. 2022. Performance analysis of N identical PVT-CPC collectors with an active single slope solar distiller and helically coiled heat exchanger using CuO nanoparticles. Water Supply 22 (2):1306–26. doi:10.2166/ws.2021.348.
  • Dhivagar, R., and M. Mohanraj. 2021. Performance improvements of single slope solar still using graphite plate fins and magnets. Environmental Science and Pollution Research 28 (16):20499–516. doi:10.1007/s11356-020-11737-5.
  • Dhivagar, R., S. Shoeibi, H. Kargarsharifabad, M. H. Ahmadi, and M. Sharifpur. 2022. Performance enhancement of a solar still using magnetic powder as an energy storage medium‐exergy and environmental analysis. Energy Science and Engineering 10 (8):3154–66. doi:10.1002/ese3.1210.
  • Diwania, S., S. Agrawal, A. S. Siddiqui, and S. Singh. 2020. Photovoltaic–thermal (PV/T) technology: A comprehensive review on applications and its advancement. International Journal of Energy & Environmental Engineering 11 (1):33–54. doi:10.1007/s40095-019-00327-y.
  • Dubey, A., S. Kumar, and A. Arora. 2021. Enviro-energy-exergo-economic analysis of etc augmented double slope solar still with ‘N’ parallel tubes under forced mode: Environmental and economic feasibility. Journal of Cleaner Production 279:123859. doi:10.1016/j.jclepro.2020.123859.
  • Dubey, M., and D. R. Mishra. 2019. Experimental and theoretical evaluation of double slope single basin solar stills: Study of heat and mass transfer. FME Transactions 47 (1):101–110. doi:10.5937/fmet1901101D.
  • Dumka, P., Y. Kushwah, A. Sharma, and D. R. Mishra. 2019. Comparative analysis and experimental evaluation of single slope solar still augmented with permanent magnets and conventional solar still. Desalination 459:34–45. doi:10.1016/j.desal.2019.02.012.
  • Dwivedi, V. K., and G. N. Tiwari. 2010. Thermal modeling and carbon credit earned of a double slope passive solar still. Desalination & Water Treatment 13 (1–3):400–10. doi:10.5004/dwt.2010.856.
  • Elango, T., and K. Kalidasa Murugavel. 2015. The effect of the water depth on the productivity for single and double basin double slope glass solar stills. Desalination 359:82–91. doi:10.1016/j.desal.2014.12.036.
  • El-Maghlany, W. M. 2015. An approach to optimization of double slope solar still geometry for maximum collected solar energy. Alexandria Engineering Journal 54 (4):823–28. doi:10.1016/j.aej.2015.06.010.
  • El-Nashar, A. M. 1994. The effect of dust accumulation on the performance of evacuated tube collectors. Solar Energy 53 (1):105–15. doi:10.1016/S0038-092X(94)90610-6.
  • El-Nashar, A. M. 2009. Seasonal effect of dust deposition on a field of evacuated tube collectors on the performance of a solar desalination plant. Desalination 239 (1–3):66–81. doi:10.1016/j.desal.2008.03.007.
  • El-Said, E. M., M. A. Dahab, A. A. Al-Nagdy, M. A. Omara, A. Ali, A. Mohamed, and G. B. Abdelaziz. 2023. An experimental study on carbon-metal composite tablets as solar absorbers for water distiller performance improvement. Journal of Cleaner Production 414:137431. doi:10.1016/j.jclepro.2023.137431.
  • Elsaie, Y., S. Ismail, H. Soussa, M. Gado, and A. Balah. 2023. Water desalination in Egypt; literature review and assessment. Ain Shams Engineering Journal 14 (7):101998. doi:10.1016/j.asej.2022.101998.
  • El-Samadony, Y. A. F., and A. E. Kabeel. 2014. Theoretical estimation of the optimum glass cover water film cooling parameters combinations of a stepped solar still. Energy 68:744–50. doi:10.1016/j.energy.2014.01.080.
  • El-Sebaii, A. A., A. A. Al-Ghamdi, F. S. Al-Hazmi, and A. S. Faidah. 2009. Thermal performance of a single basin solar still with PCM as a storage medium. Applied Energy 86 (7–8):1187–95. doi:10.1016/j.apenergy.2008.10.014.
  • El-Sebaii, A. A., M. R. I. Ramadan, S. Aboul-Enein, and M. El-Naggar. 2015. Effect of fin configuration parameters on single basin solar still performance. Desalination 365:15–24. doi:10.1016/j.desal.2015.02.002.
  • Gnanadason, M. H. S. Y. M., and P. S. Kumar. 2011. S.Rajakumar, effect of nanofluids in a vacuum single basin solar still. International Journal of Advanced Engineering Research and Studies 1:171–77.
  • Gnanaraj, S. J. P., S. Ramachandran, and D. S. Christopher. 2018. Enhancing the productivity of double-slope single-basin solar still with internal and external modifications. International Journal of Ambient Energy 39 (8):777–82. doi:10.1080/01430750.2017.1340338.
  • Gnanaraj, S. J. P., and V. Velmurugan. 2019. An experimental study on the efficacy of modifications in enhancing the performance of single basin double slope solar still. Desalination 467:12–28. doi:10.1016/j.desal.2019.05.015.
  • Gnanaraj, S. J. P., and V. Velmurugan. 2022. Experimental investigation on the performance of modified single basin double slope solar stills. International Journal of Ambient Energy (1):206–15. doi:10.1080/01430750.2019.1636861.
  • Gual-Uc, J., J. G. Carrillo, A. Bassam, M. Flota-Bañuelos, and C. A. Pineda-Arellano. 2019. Assessment of a double slope solar still for the distillation of cenote water in the Yucatan peninsula – thermal and economic analysis. Desalination & Water Treatment 169:88–101. doi:10.5004/dwt.2019.24729.
  • Guo, Y. Z., D. C. Yin, H. L. Cao, J. Y. Shi, C. Y. Zhang, Y. M. Liu, H. H. Huang, Y. Liu, Y. Wang, W. H. Guo, et al. 2012. Evaporation rate of water as a function of a magnetic field and field gradient. International Journal of Molecular Sciences 13 (12):16916–28. doi:10.3390/ijms131216916.
  • Gupta, V. S., V. K. Dwivedi, P. Gupta, R. Singh, and M. Singh. 2020. Performance evaluation of active solar distiller (double slope) in usual transmission method. Materials Today: Proceedings 21:1717–21. doi:10.1016/j.matpr.2019.12.052.
  • Gupta, V. S., D. B. Singh, S. K. Sharma, N. Kumar, T. S. Bhatti, and G. N. Tiwari. 2020. Modeling self-sustainable fully-covered photovoltaic thermal-compound parabolic concentrators connected to double slope solar distiller. Desalination and Water Treatment 190:12–27. doi:10.5004/dwt.2020.25696.
  • Habib, N. A., A. J. Ali, M. T. Chaichan, and M. Kareem. 2021. Carbon nanotubes/paraffin wax nanocomposite for improving the performance of a solar air heating system. Thermal Science and Engineering Progress 23:100877. doi:10.1016/j.tsep.2021.100877.
  • Hammoodi, K. A., H. A. Dhahad, W. A. Alawee, Z. M. Omara, and T. Yusaf. 2023. Pyramid solar distillers: A comprehensive review of recent techniques. Results in Engineering 18:101157. doi:10.1016/j.rineng.2023.101157.
  • Hedayati-Mehdiabadi, E., F. Sarhaddi, and F. Sobhnamayan. 2020. Exergy performance evaluation of a basin-type double-slope solar still equipped with phase-change material and PV/T collector, renew. Renewable Energy 145:2409–25. doi:10.1016/j.renene.2019.07.160.
  • Hegazy, A. A. 2001. Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors. Renewable Energy 22 (4):525–40. doi:10.1016/S0960-1481(00)00093-8.
  • Herrando, M., K. Wang, G. Huang, T. Otanicar, O. B. Mousa, R. A. Agathokleous, Y. Ding, S. Kalogirou, N. Ekins-Daukes, R. A. Taylor, et al. 2023. A review of solar hybrid photovoltaic-thermal (PV-T) collectors and systems. Progress in Energy and Combustion Science 97:101072.8. doi:10.1016/j.pecs.2023.101072.
  • Holysz, L., A. Szczes, and E. Chibowski. 2007. Effects of a static magnetic field on water and electrolyte solutions. Journal of Colloid and Interface Science 316 (2):996–1002. doi:10.1016/j.jcis.2007.08.026.
  • Isah, A. S., H. Bint Takaijudin, B. S. M. Singh, S. I. U. H. Gilani, K. W. Yusof, A. S. I. Abdurrasheed, T. O. Abimbola, and M. M. Shoeb. 2022. Solar energy desalination distillate yield and cost evolution, and statistical relationship between meteorological variables and distillate yield. Solar Energy 246:256–72. doi:10.1016/j.solener.2022.09.025.
  • Jahanpanah, M., S. J. Sadatinejad, A. Kasaeian, M. H. Jahangir, and H. Sarrafha. 2021. Experimental investigation of the effects of low-temperature phase change material on single-slope solar still. Desalination 499:114799. doi:10.1016/j.desal.2020.114799.
  • Jani, H. K., and K. V. Modi. 2019. Experimental performance evaluation of single basin dual slope solar still with circular and square cross-sectional hollow fins. Solar Energy 179:186–94. doi:10.1016/j.solener.2018.12.054.
  • Jin, H., X. Peng, O. W. Frauenfeld, Y. Zhao, X. Li, W. Tian, C. Chen, B. Liang, X. Li, and C. Mu. 2023. Performance and changes of high‐resolution (1 km) surface air temperature in Northern Hemisphere permafrost regions. International Journal of Climatology 43 (3):1333–48. doi:10.1002/joc.7918.
  • Jobrane, M., A. Kopmeier, A. Kahn, H. M. Cauchie, A. Kharroubi, and C. Penny. 2022. Theoretical and experimental investigation on a novel design of wick type solar still for sustainable freshwater production. Applied Thermal Engineering 200:117648. doi:10.1016/j.applthermaleng.2021.117648.
  • Juaidi, A., H. H. Muhammad, R. Abdallah, R. Abdalhaq, A. Albatayneh, and F. Kawa. 2022. Experimental validation of dust impact on-grid connected PV system performance in Palestine: An energy nexus perspective. Energy Nexus 6:100082. doi:10.1016/j.nexus.2022.100082.
  • Kabeel, A. E., G. B. Abdelaziz, and E. M. El-Said. 2019. Experimental investigation of a solar still with composite material heat storage: Energy, exergy and economic analysis. Journal of Cleaner Production 231:21–34. doi:10.1016/j.jclepro.2019.05.200.
  • Kabeel, A. E., and M. Abdelgaied. 2016. Improving the performance of solar still by using PCM as a thermal storage medium under Egyptian conditions. Desalination 383:22–28. doi:10.1016/j.desal.2016.01.006.
  • Kabeel, A. E., M. Abdelgaied, and M. Mahgoub. 2016. The performance of a modified solar still using hot air injection and PCM. Desalination 379:102–107. doi:10.1016/j.desal.2015.11.007.
  • Kabeel, A. E., Z. M. Omara, and F. A. Essa. 2014. Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach. Energy Conversion and Management 78:493–98. doi:10.1016/j.enconman.2013.11.013.
  • Kabeel, A. E., R. Sathyamurthy, A. M. Manokar, S. W. Sharshir, F. A. Essa, and A. H. Elshiekh. 2020. Experimental study on tubular solar still using Graphene oxide nano particles in phase change material (Npcm’s) for fresh water production. Journal of Energy Storage 28:101204. doi:10.1016/j.est.2020.101204.
  • Kandasamy, S., M. Vellingiri, S. Sengottain, and J. Balasundaram. 2013. Performance correlation for single-basin double slope solar still. International Journal of Energy & Environmental Engineering 4 (1):4–7. doi:10.1186/2251-6832-4-4.
  • Kandeal, A. W., Z. Xu, G. Peng, M. H. Hamed, A. E. Kabeel, N. Yang, and S. W. Sharshir. 2022. Thermo-economic performance enhancement of a solar desalination unit using external condenser, nanofluid, and ultrasonic foggers. Sustainable Energy Technologies and Assessments 52:102348. doi:10.1016/j.seta.2022.102348.
  • Kargar Sharif Abad, H., M. Ghiasi, S. Jahangiri Mamouri, and M. B. Shafii. 2013. A novel integrated solar desalination system with a pulsating heat pipe. Desalination 311:206–10. doi:10.1016/j.desal.2012.10.029.
  • Kateshia, J., and V. Lakhera. 2022. A comparative study of various fatty acids as phase change material to enhance the freshwater productivity of solar still. Journal of Energy Storage 48:103947. doi:10.1016/j.est.2021.103947.
  • Kaushal, A. K., M. K. Mittal, and D. Gangacharyulu. 2017. An experimental study of floating wick basin type vertical multiple effect diffusion solar still with waste heat recovery. Desalination 414:35–45. doi:10.1016/j.desal.2017.03.033.
  • Kaviti, A. K., B. Mary, A. S. Ram, and A. A. Kumari. 2021. Influence of aluminium parabolic fins as energy absorption material in the solar distillation system. Materials Today: Proceedings 44:2521–2525. doi:10.1016/j.matpr.2020.12.603.
  • Kaviti, A. K., A. S. Ram, and A. K. Thakur. 2022. Influence of fully submerged permanent magnets in the evaluation of heat transfer and performance analysis of single slope glass solar still. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 236 (1):109–123. doi:10.1177/09576509211031021.
  • Kumar, P. M., P. Chauhan, A. K. Sharma, M. L. Rinawa, A. J. Rahul, M. Srinivas, and A. Tamilarasan. 2022. Performance study on solar still using nano disbanded phase change material (NDPCM). Materials Today: Proceedings 62:1894–1897. doi:10.1016/j.matpr.2022.01.050.
  • Kumar, P. M., D. Sudarvizhi, K. B. Prakash, A. M. Anupradeepa, S. B. Raj, S. Shanmathi, K. Sumithra, and S. Surya. 2021. Investigating a single slope solar still with a nano-phase change material. Materials Today: Proceedings 45:7922–7925. doi:10.1016/j.matpr.2020.12.804.
  • Lawrence, S. A., S. P. Gupta, and G. N. Tiwari. 1988. Experimental validation of thermal analysis of solar still with dye. International Journal of Solar Energy 6 (5):291–305. doi:10.1080/01425918808914235.
  • Lokhande, A. A., and S. M. Shaikh. 2018. Performance investigation of single basin double slope solar still with and without phase change material and effect of reflector and fins. International Research Journal of Engineering and Technology 5:1686–93.
  • Mahdi, J. T., B. E. Smith, and A. O. Sharif. 2011. An experimental wick-type solar still system: Design and construction. Desalination 267 (2–3):233–38. doi:10.1016/j.desal.2010.09.032.
  • Masood, F., N. B. M. Nor, P. Nallagownden, I. Elamvazuthi, R. Saidur, M. A. Alam, J. Akhter, M. Yusuf, M. Mehmood, and M. Ali. 2022. A review of recent developments and applications of compound parabolic concentrator-based hybrid solar photovoltaic/thermal collectors. Sustainability 14 (9):5529. doi:10.3390/su14095529.
  • Minasian, A. N., and A. A. Al-Karaghouli. 1995. An improved solar still: The wick-basin type. Energy Conversion and Management 36 (3):213–17. doi:10.1016/0196-8904(94)00053-3.
  • Modi, K. V., H. K. Jani, and I. D. Gamit. 2021. Impact of orientation and water depth on productivity of single-basin dual-slope solar still with Al2O3 and CuO nanoparticles. Journal of Thermal Analysis and Calorimetry 143 (2):899–913. doi:10.1007/s10973-020-09351-1.
  • Mohammadi, K., H. Taghvaei, and E. G. Rad. 2020. Experimental investigation of a double slope active solar still: Effect of a new heat exchanger design performance, Appl. Applied Thermal Engineering 180:115875. doi:10.1016/j.applthermaleng.2020.115875.
  • Morad, M. M., H. A. M. El-Maghawry, and K. I. Wasfy. 2015. Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination 373:1–9. doi:10.1016/j.desal.2015.06.017.
  • Morse, R. N., and W. R. W. Read. 1968. A rational basis for the Engineering Development of a solar still. Solar Energy 12 (1):5–17. doi:10.1016/0038-092X(68)90021-2.
  • Moungar, H., A. Azzi, Y. Sahli, and A. Hieda. 2018. Double slope solar still with immersed fins: Theoretical and experimental study. UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science 80:231–46.
  • Muftah, A. F., M. A. Alghoul, A. Fudholi, M. M. Abdul-Majeed, and K. Sopian. 2014. Factors affecting basin type solar still productivity: A detailed review. Renewable and Sustainable Energy Reviews 32:430–47. doi:10.1016/j.rser.2013.12.052.
  • Murugavel, K. K., K. K. S. K. Chockalingam, and K. Srithar. 2009. Modeling and verification of double slope single basin solar still using laboratory and actual solar conditions. Jordan Journal of Mechanical and Industrial Engineering 3:228–35.
  • Murugavel, K. K., S. Sivakumar, J. R. Ahamed, K. K. S. K. Chockalingam, and K. Srithar. 2010. Single basin double slope solar still with minimum basin depth and energy storing materials. Applied Energy 87 (2):514–23. doi:10.1016/j.apenergy.2009.07.023.
  • Murugavel, K. K., and K. Srithar. 2011. Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renewable Energy 36 (2):612–20. doi:10.1016/j.renene.2010.08.009.
  • Muthu Saravanan, N., S. Rajakumar, and A. A. M. Moshi. 2020. Experimental investigation on the performance enhancement of single basin double slope solar still using kanchey marbles as sensible heat storage materials. Materials Today: Proceedings 39:1600–04. doi:10.1016/j.matpr.2020.05.710.
  • Naim, M. M., and M. A. Abd El Kawi. 2003. Non-conventional solar stills Part 2. Non-conventional solar stills with energy storage element. Desalination 153 (1–3):71–80. doi:10.1016/S0011-9164(02)01095-0.
  • Nakagawa, J., N. Hirota, K. Kitazawa, and M. Shoda. 1999. Magnetic field enhancement of water vaporization. Journal of Applied Physics 86 (5):2923–25. doi:10.1063/1.371144.
  • Nazari, S., H. Safarzadeh, and M. Bahiraei. 2019. Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid. Renewable Energy 135:729–44. doi:10.1016/j.renene.2018.12.059.
  • Numbere, A. O., T. N. Gbarakoro, and B. B. Babatunde. 2023. Environmental degradation in the Niger Delta ecosystem: The role of anthropogenic pollution. In Izah, H.C. and Ogwa, N.C. (eds) Sustainable utilization and conservation of Africa’s biological resources and environment, 411–439. Singapore: Springer Nature Singapore.
  • Omara, Z. M., A. S. Abdullah, F. A. Essa, and M. M. Younes. 2021. Performance evaluation of a vertical rotating wick solar still. Process Safety and Environmental Protection 148:796–804. doi:10.1016/j.psep.2021.02.004.
  • Omara, Z. M., W. H. Alawee, S. A. Mohammed, H. A. Dhahad, A. S. Abdullah, and F. A. Essa. 2022. Experimental study on the performance of pyramid solar still with novel convex and dish absorbers and wick materials. Journal of Cleaner Production 373:133835. doi:10.1016/j.jclepro.2022.133835.
  • Omara, Z. M., M. A. Eltawil, and E. A. El Nashar. 2013. A new hybrid desalination system using wicks/solar still and evacuated solar water heater. Desalination 325:56–64. doi:10.1016/j.desal.2013.06.024.
  • Omara, Z. M., A. E. Kabeel, A. S. Abdullah, and F. A. Essa. 2016. Experimental investigation of corrugated absorber solar still with wick and reflectors. Desalination 381:111–16. doi:10.1016/j.desal.2015.12.001.
  • Pal, P., R. Dev, D. Singh, and A. Ahsan. 2018. Energy matrices, exergoeconomic and enviroeconomic analysis of modified multi–wick basin type double slope solar still. Desalination 447:55–73. doi:10.1016/j.desal.2018.09.006.
  • Pal, P., A. K. Nayak, and R. Dev. 2018. A Modified Double Slope Basin Type Solar Distiller : Experimental and Enviro–Economic Study. Evergreen 5 (1):52–61. doi:10.5109/1929730.
  • Pal, P., P. Yadav, R. Dev, and D. Singh. 2017. Performance analysis of modified basin type double slope multi–wick solar still. Desalination 422:68–82. doi:10.1016/j.desal.2017.08.009.
  • Pang, X. F., and D. Bo. 2008. The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Physica: B, Condensed Matter 403 (19–20):3571–77. doi:10.1016/j.physb.2008.05.032.
  • Papa, F., J. F. Crétaux, M. Grippa, E. Robert, M. Trigg, R. M. Tshimanga, B. Kitambo, A. Paris, A. Carr, A. S. Fleischmann, et al. 2023. Water resources in Africa under global change: Monitoring surface waters from space. Surveys in Geophysics 44 (1):43–93. doi:10.1007/s10712-022-09700-9.
  • Parsa, S. M., A. Yazdani, D. Javadi, M. Afrand, N. Karimi, and H. M. Ali. 2022. Selecting efficient side of thermoelectric in pyramid-shape solar desalination units incorporated phase change material (PCM), nanoparticle, turbulator with battery storage powered by photovoltaic. Journal of Energy Storage 51:104448. doi:10.1016/j.est.2022.104448.
  • Patel, S. K., B. Kumar, P. Pal, R. Dev, and D. Singh. 2020. Production of potable water from Gomti River by using modified double slope solar still with external mounted reflectors. Solar Energy 209:576–89. doi:10.1016/j.solener.2020.09.036.
  • Prajapati, U. K., B. Gupta, and J. Bhalavi. 2019. Performance improvement of double slope solar still using aluminum fins and phase change material. Journal of Emerging Technologies and Innovative Research 6:295–302.
  • Rabishokr, K., and R. Daghigh. 2023. A portable solar still’s productivity boost combining a magnetic stirrer and thermoelectric. Desalination 549:116340. doi:10.1016/j.desal.2022.116340.
  • Radhwan, A. M. 2005. Transient performance of a stepped solar still with built-in latent heat thermal energy storage. Desalination 171 (1):61–76. doi:10.1016/j.desa1.2003.12.010.
  • Rahbar, N., A. Gharaiian, and S. Rashidi. 2017. Exergy and economic analysis for a double slope solar still equipped by thermoelectric heating modules - an experimental investigation. Desalination 420:106–13. doi:10.1016/j.desal.2017.07.005.
  • Rajamanickam, M. R., and A. Ragupathy. 2013. Enhanced performance of a single basin double slope solar still with thin film of water flowing over the cover plate. International Journal of Energy Technology and Policy 3:1–13.
  • Rajamanickam, M. R., P. Velmurugan, A. Ragupathy, and E. Sivaraman. 2021. Use of thermal energy storage materials for enhancement in distillate output of double slope solar still, mater. Materials Today: Proceedings 34:416–19. doi:10.1016/j.matpr.2020.02.203.
  • Rajaseenivasan, T., K. Kalidasa Murugavel, and T. Elango. 2015. Performance and exergy analysis of a double-basin solar still with different materials in basin. Desalination & Water Treatment 55 (7):1786–94. doi:10.1080/19443994.2014.928800.
  • Rajaseenivasan, T., K. K. Murugavel, and K. K. Murugavel. 2013. Theoretical and experimental investigation on double basin double slope solar still. Desalination 319:25–32. doi:10.1016/j.desal.2013.03.029.
  • Rajvanshi, A. K. 1981. Effect of various dyes on solar distillation. Solar Energy 27 (1):51–65. doi:10.1016/0038-092X(81)90020-7.
  • Rashid, F., and N. Hassan. 2013. Increasing water evaporation rate by magnetic field. International Journal of Science Investigation 2:61–68.
  • Robert, R. A., D. K. Kaithari, M. M. Mirza, and P. S. Bhambare. 2018. Influence of nano al2o3 to improve the yield of double slope solar still. International Journal of Students’ Research in Technology & Management 6 (3):01–08. doi:10.18510/ijsrtm.2018.631.
  • Rubio, E., L. Ferna, and M. A. Porta-Gándara. 2004. Modeling thermal asymmetries in double slope solar stills. Renewable Energy 29 (6):895–906. doi:10.1016/j.renene.2003.11.001.
  • Saeed, A. A., A. M. Alharthi, K. M. Aldosari, A. S. Abdullah, F. A. Essa, U. F. Alqsair, M. Aljaghtham, and Z. M. Omara. 2022. Improving the drum solar still performance using corrugated drum and nano-based phase change material. Journal of Energy Storage 55:105647. doi:10.1016/j.est.2022.105647.
  • Sahota, L., V. S. Gupta, and G. N. Tiwari. 2018. Analytical study of thermo-physical performance of nanofluid loaded hybrid double slope solar still. Journal of Heat Transfer 140 (11). doi:10.1115/1.4040782.
  • Sahota, L., and G. N. Tiwari. 2016a. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Solar Energy 130:260–72. doi:10.1016/j.solener.2016.02.018.
  • Sahota, L., and G. N. Tiwari. 2016b. Effect of nanofluids on the performance of passive double slope solar still: A comparative study using characteristic curve. Desalination 388:9–21. doi:10.1016/j.desal.2016.02.039.
  • Sahota, L., G. N. Tiwari, and G. N. Shyam. 2017. Tiwari, Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nano fluids. Desalination 409:66–79. doi:10.1016/j.desal.2017.01.012.
  • Sakthivel, M., S. Shanmugasundaram, and T. Alwarsamy. 2010. An experimental study on a regenerative solar still with energy storage medium — jute cloth. Desalination 264 (1–2):24–31. doi:10.1016/j.desal.2010.06.074.
  • Saleh, B., F. A. Essa, A. Aly, M. Alsehli, H. Panchal, A. Afzal, and S. Shanmugan. 2022. Investigating the performance of dish solar distiller with phase change material mixed with Al2O3 nanoparticles under different water depths. Environmental Science and Pollution Research 29 (19):28115–28126. doi:10.1007/s11356-021-18295-4.
  • Salem, M. R., M. R. Salem, M. G. Higazy, and M. F. Abdrabbo. 2020. Performance enhancement of a solar still distillation unit: A field investigation. Solar Energy 202:326–41. doi:10.1016/j.solener.2020.03.098.
  • Samykano, M. 2023. Hybrid photovoltaic thermal systems: Present and future feasibilities for Industrial and building applications. Buildings 13 (8):1950. doi:10.3390/buildings13081950.
  • Sathyamurthy, R., W. M. El-Maghlany, M. E. H. Attia, A. E. Kabeel, M. Abdelgaied, M. Abdel-Aziz, A. S. Abdullah, and S. Vasanthaseelan. 2022. Hemispherical solar distiller performance utilizing hybrid storage media, paraffin wax with nanoparticles: An experimental study. Molecules 27 (24):8988. doi:10.3390/molecules27248988.
  • Selimefendigil, F., C. Şirin, and H. F. Öztop. 2022. Experimental analysis of combined utilization of CuO nanoparticles in latent heat storage unit and absorber coating in a single-slope solar desalination system. Solar Energy 233:278–86. doi:10.1016/j.solener.2022.01.039.
  • Sethi, A. K., and V. K. Dwivedi. 2013. Exergy analysis of double slope active solar still under forced circulation mode. Desalination & Water Treatment 51 (40–42):7394–400. doi:10.1080/19443994.2013.777945.
  • Sethi, A. K., and V. K. Dwivedi. 2016. Design, fabrication, and performance evaluation of double slope active solar still under forced circulation mode. International Journal of Thermal & Environmental Engineering 6:27–34.
  • Seyfi, A., R. Afzalzadeh, and A. Hajnorouzi. 2017. Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface. Chemical Engineering & Processing - Process Intensification 120:195–200. doi:10.1016/j.cep.2017.06.009.
  • Sharma, N., S. Noushad, G. Siva Ram Kumar Reddy. 2022. Effect of copper fins on fresh water productivity of pyramid solar still. In Recent Trends in Thermal Engineering, Lecture Notes in Mechanical Engineering,(pp. 83–91). Springer Singapore.
  • Sharma, A., and V. Sachan. 2019. Experimental investigation of double slope stepped solar still. American Journal of Surgery 10:201–06.
  • Sharshir, S. W., M. A. Eltawil, A. M. Algazzar, R. Sathyamurthy, and A. W. Kandeal. 2020. Performance enhancement of stepped double slope solar still by using nanoparticles and linen wicks: Energy, exergy and economic analysis. Applied Thermal Engineering 174:115278. doi:10.1016/j.applthermaleng.2020.115278.
  • Sharshir, S. W., G. Peng, L. Wu, F. A. Essa, A. E. Kabeel, and N. Yang. 2017. The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Applied Energy 191:358–66. doi:10.1016/j.apenergy.2017.01.067.
  • Sharshir, S. W., G. Peng, L. Wu, N. Yang, F. A. Essa, A. H. Elsheikh, S. I. T. Mohamed, and A. E. Kabeel. 2017. Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study. Applied Thermal Engineering 113:684–93. doi:10.1016/j.applthermaleng.2016.11.085.
  • Shoeibi, S., H. Kargarsharifabad, and N. Rahbar. 2021. Effects of nano-enhanced phase change material and nano-coated on the performance of solar stills. Journal of Energy Storage 42:103061. doi:10.1016/j.est.2021.103061.
  • Singh, D. B. 2017. Exergoeconomic and enviroeconomic analyses of N identical photovoltaic thermal integrated double slope solar still. International Journal of Exergy 23 (4):347–66. doi:10.1504/IJEX.2017.086170.
  • Singh, D. B. 2019. Exergo-economic, enviro-economic and productivity analyses of N identical evacuated tubular collectors integrated double slope solar still. Applied Thermal Engineering 148:96–104. doi:10.1016/j.applthermaleng.2018.10.127.
  • Singh, R. V., S. Kumar, M. M. Hasan, M. E. Khan, and G. N. Tiwari. 2013. Performance of a solar still integrated with evacuated tube collector in natural mode. Desalination 318:25–33. doi:10.1016/j.desal.2013.03.012.
  • Singh, H. N., and G. N. Tiwari. 2004. Monthly performance of passive and active solar stills for different Indian climatic conditions. Desalination 168:145–50. doi:10.1016/j.desal.2004.06.180.
  • Sodha, M. S., A. Kumar, G. N. Tiwari, and G. C. Pandey. 1980. Effects of dye on the performance of a solar still. Applied Energy 7 (1–3):147–62. doi:10.1016/0306-2619(80)90055-0.
  • Sodha, M. S., A. Kumar, G. N. Tiwari, and R. C. Tyagi. 1981. Simple multiple wick solar still: Analysis and performance. Solar Energy 26 (2):127–31. doi:10.1016/0038-092X(81)90075-X.
  • Soldavini, A. L., J. S. Harkness, Z. F. Levy, M. S. Fram, Quality of groundwater used for domestic drinking-water supply in the Coachella Valley, 2020 (no. 2022-1122). US Geological Survey (2023).
  • Sonawane, C., A. J. Alrubaie, H. Panchal, A. J. Chamkha, M. M. Jaber, A. D. Oza, S. Zahmatkesh, D. D. Burduhos-Nergis, and D. P. Burduhos-Nergis. 2022. Investigation on the impact of different absorber materials in solar still using CFD simulation—economic and environmental analysis. Water 14 (19):3031. doi:10.3390/w14193031.
  • Suneesh, P. U., R. Jayaprakash, T. Arunkumar, and D. Denkenberger. 2014. Effect of air flow on “V” type solar still with cotton gauze cooling. Desalination 337:1–5. doi:10.1016/j.desal.2013.12.035.
  • Szcześ, A., E. Chibowski, L. Hołysz, and P. Rafalski. 2011. Effects of static magnetic field on water at kinetic condition. Chemical Engineering and Processing: Process Intensification 50 (1):124–27. doi:10.1016/j.cep.2010.12.005.
  • Tabrizi, F. F., and A. Z. Sharak. 2010. Experimental study of an integrated basin solar still with a sandy heat reservoir. Desalination 253 (1–3):195–99. doi:10.1016/j.desal.2009.10.003.
  • Thakur, A. K., R. Sathyamurthy, and R. Velraj. 2022. Development of candle soot dispersed phase change material for improving water generation potential of tubular solar distillation unit. Solar Energy Materials & Solar Cells 241:111748. doi:10.1016/j.solmat.2022.111748.
  • Tirupati Rao, V., and Y. Raja Sekhar. 2023. Hybrid photovoltaic/thermal (PVT) collector systems with different absorber configurations for thermal management–a review. Energy & Environment 34 (3):690–735. doi:10.1177/0958305X211065575.
  • Tiwari, G. N., V. Dimri, and A. Chel. 2009. Parametric study of an active and passive solar distillation system: Energy and exergy analysis. Desalination 242 (1–3):1–18. doi:10.1016/j.desal.2008.03.027.
  • Tiwari, A. K., and G. N. Tiwari. 2006. Effect of water depths on heat and mass transfer in a passive solar still: In summer climatic condition. Desalination 195 (1–3):78–94. doi:10.1016/j.desal.2005.11.014.
  • Tuly, S. S., A. B. S. Ayon, R. Hassan, B. K. Das, R. H. Khan, and M. R. I. Sarker. 2022. Performance investigation of active double slope solar stills incorporating internal sidewall reflector, hollow circular fins, and nanoparticle-mixed phase change material. Journal of Energy Storage 55:105660. doi:10.1016/j.est.2022.105660.
  • Tuly, S. S., M. S. Rahman, M. R. I. Sarker, and R. A. Beg. 2021. Combined influence of fin, phase change material, wick, and external condenser on the thermal performance of a double slope solar still. Journal of Cleaner Production 287:125458. doi:10.1016/j.jclepro.2020.125458.
  • Vembu, S., M. E. H. Attia, M. Thangamuthu, and G. Thangamuthu. 2023. Energy, exergy, and economic analysis of solar still using coal cylinder fins: An experimental study. Environmental Science and Pollution Research 30 (2):2597–2606. doi:10.1007/s11356-022-22325-0.
  • Vigneswaran, V. S., G. Kumaresan, B. V. Dinakar, K. K. Kamal, and R. Velraj. 2019. Augmenting the productivity of solar still using multiple PCMs as heat energy storage. Journal of Energy Storage 26:101019. doi:10.1016/j.est.2019.101019.
  • Wang, L., X. Ma, Y. Zhao, R. Jin, and H. Zheng. 2022. Performance study of a passive vertical multiple-effect diffusion solar still directly heated by parabolic concentrator. Renewable Energy 182:855–66. doi:10.1016/j.renene.2021.09.074.
  • Wang, Q., Y. Qin, F. Jia, Y. Li, and S. Song. 2021. Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation. Renewable Energy 163:146–53. doi:10.1016/j.renene.2020.07.019.
  • Wang, Y., H. Wei, and Z. Li. 2018. Effect of magnetic field on the physical properties of water. Results Physics 8:262–67. doi:10.1016/j.rinp.2017.12.022.
  • Xenarios, S. 2023. Water at time of war. Nature Sustainability 6 (5):485–86. doi:10.1038/s41893-023-01065-0.
  • Yousef, M. S., and H. Hassan. 2019. An experimental work on the performance of single slope solar still incorporated with latent heat storage system in hot climate conditions. Journal of Cleaner Production 209:1396–410. doi:10.1016/j.jclepro.2018.11.120.
  • Zamfir, E., C. Oancea, and V. Badescu. 1994. Cloud cover influence on long-term performances of flat plate solar collectors. Renewable Energy 4 (3):339–47. doi:10.1016/0960-1481(94)90038-8.
  • Zedan, A. S., and S. A. M. Nasr Eldin. 2015. An experimental investigation of the factors which effect on the performance of a single basin typical double slope solar still for water desalination. Energy and Power Engineering 7 (06):270–77. doi:10.4236/epe.2015.76026.
  • Zurigat, Y. H., and M. K. Abu-Arabi. 2004. Modelling and performance analysis of a regenerative solar desalination unit. Applied Thermal Engineering 24 (7):1061–72. doi:10.1016/j.applthermaleng.2003.11.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.