130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Catalytic pyrolysis of Paulownia wood and bio-oil characterization

ORCID Icon & ORCID Icon
Pages 1626-1643 | Received 13 Oct 2023, Accepted 23 Nov 2023, Published online: 11 Jan 2024

References

  • Abbasi-Atibeh, E., and A. Yozgatligil. 2014. A study on the effects of catalysts on pyrolysis and combustion characteristics of Turkish lignite in oxy-fuel conditions. Fuel 115:841–849. doi:10.1016/j.fuel.2013.01.073.
  • Ahmed, A., M. S. Abu Bakar, R. S. Sukri, M. Hussain, A. Farooq, S. Moogi, and Y.-K. Park. 2020. Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production. Energy Conversion and Management 226:113502. doi:10.1016/j.enconman.2020.113502.
  • Ali, M. R., A. G. H. Saif, and S. S. Wahid. 2020. Investigating the effect of pyrolysis parameters on product yields of mixed wood sawdust in a semi-batch reactor and its characterization. Petroleum & Coal 62 (1).
  • Al-Layla, N. M. T., L. A. Saleh, and A. B. Fadhil. 2021. Liquid bio-fuels and carbon adsorbents production via pyrolysis of non-edible feedstock. Journal of Analytical and Applied Pyrolysis 156:105088. doi:10.1016/j.jaap.2021.105088.
  • Antonakou, E., A. Lappas, M. H. Nilsen, A. Bouzga, and M. Stöcker. 2006. Evaluation of various types of al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel 85 (14–15):2202–2212. doi:10.1016/j.fuel.2006.03.021.
  • Aysu, T., H. Durak, S. Güner, A. Ş. Bengü, and N. Esim. 2016. Bio-oil production via catalytic pyrolysis of anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization. Bioresource Technology 205:7–14. doi:10.1016/j.biortech.2016.01.015.
  • Aysu, T., and M. M. Küçük. 2014. Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products. Energy 64:1002–1025. doi:10.1016/j.energy.2013.11.053.
  • Azizi, K., M. Keshavarz Moraveji, and H. A. Najafabadi. 2018. Simultaneous pyrolysis of microalgae C. vulgaris, wood and polymer: The effect of third component addition. Bioresource Technology 247:66–72. doi:10.1016/j.biortech.2017.09.059.
  • Bhoi, P. R., A. S. Ouedraogo, V. Soloiu, and R. Quirino. 2020. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis. Renewable and Sustainable Energy Reviews 121:109676. doi:10.1016/j.rser.2019.109676.
  • Branca, C., P. Giudicianni, and C. Di Blasi. 2003. GC/MS characterization of liquids generated from low-temperature pyrolysis of wood. Industrial & Engineering Chemistry Research 42 (14):3190–3202. doi:10.1021/ie030066d.
  • Butt, D. A. 2006. Formation of phenols from the low-temperature fast pyrolysis of radiata pine (Pinus radiata): Part I. Influence of molecular oxygen. Journal of Analytical and Applied Pyrolysis 76 (1–2):38–47. doi:10.1016/j.jaap.2005.07.003.
  • Chaihad, N., A. Anniwaer, S. Karnjanakom, Y. Kasai, S. Kongparakul, C. Samart, P. Reubroycharoen, A. Abudula, and G. Guan. 2021. In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of sunflower stalk to aromatic hydrocarbons over bifunctional cu-loaded HZSM-5. Journal of Analytical and Applied Pyrolysis 155:105079. doi:10.1016/j.jaap.2021.105079.
  • Chang, S., Z. Zhao, A. Zheng, X. Li, X. Wang, Z. Huang, F. He, and H. Li. 2013. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor. Bioresource Technology 138:321–328. doi:10.1016/j.biortech.2013.03.170.
  • Chen, X., Q. Che, S. Li, Z. Liu, H. Yang, Y. Chen, X. Wang, J. Shao, and H. Chen. 2019. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Processing Technology 196:106180. doi:10.1016/j.fuproc.2019.106180.
  • Chen, W.-H., S. Nižetić, R. Sirohi, Z. Huang, R. Luque, A. Papadopoulos, R. Sakthivel, X. Phuong Nguyen, and A. Tuan Hoang. 2022. Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Bioresource Technology 344:126207. doi:10.1016/j.biortech.2021.126207.
  • Chen, M., J. Wang, M.-X. Zhang, M.-G. Chen, X.-F. Zhu, F.-F. Min, and Z.-C. Tan. 2008. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis 82 (1):145–150. doi:10.1016/j.jaap.2008.03.001.
  • Chen, M., J. Zhang, Y. Wang, Z. Tang, J. Shi, C. Wang, Z. Yang, J. Wang, and H. Zhang. 2021. Lignin catalytic depolymerization for liquid fuel and phenols by using Mo/sepiolite catalysts calcined at different temperature. Journal of Environmental Chemical Engineering 9 (4):105348. doi:10.1016/j.jece.2021.105348.
  • Czernik, S., and A. V. Bridgwater. 2004. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels 18 (2):590–598. doi:10.1021/ef034067u.
  • Dada, T. K., M. Sheehan, S. Murugavelh, and E. Antunes. 2023. A review on catalytic pyrolysis for high-quality bio-oil production from biomass. Biomass Conversion and Biorefinery 13 (4):2595–2614. doi:10.1007/s13399-021-01391-3.
  • Demirbaş, A. 1997. Calculation of higher heating values of biomass fuels. Fuel 76 (5):431–434. doi:10.1016/S0016-2361(97)85520-2.
  • Demirbaş, A. 2001. Relationships between lignin contents and heating values of biomass. Energy Conversion and Management 42 (2):183–188. doi:10.1016/S0196-8904(00)00050-9.
  • Diblasi, C. 2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science 34 (1):47–90. doi:10.1016/j.pecs.2006.12.001.
  • Drugkar, K., W. Rathod, T. Sharma, A. Sharma, J. Joshi, V. K. Pareek, L. Ledwani, and U. Diwekar. 2022. Advanced separation strategies for up-gradation of bio-oil into value-added chemicals: A comprehensive review. Separation and Purification Technology 283:120149. doi:10.1016/j.seppur.2021.120149.
  • Du, S., D. P. Gamliel, J. A. Valla, and G. M. Bollas. 2016. The effect of ZSM-5 catalyst support in catalytic pyrolysis of biomass and compounds abundant in pyrolysis bio-oils. Journal of Analytical and Applied Pyrolysis 122:7–12. doi:10.1016/j.jaap.2016.11.002.
  • Durak, H. 2015. Thermochemical conversion of phellinus pomaceus via supercritical fluid extraction and pyrolysis processes. Energy Conversion and Management 99:282–298. doi:10.1016/j.enconman.2015.04.050.
  • Dżugan, M., M. Miłek, D. Grabek-Lejko, J. Hęclik, B. Jacek, and W. Litwińczuk. 2021. Antioxidant activity, polyphenolic profiles and antibacterial properties of leaf extract of various paulownia spp. Clones. Agronomy 11 (10). doi:10.3390/agronomy11102001.
  • Ertaş, M., and M. Hakkı Alma. 2016. Evaluation of influence of two different catalysts on the pyrolysis of laurel (Laurus nobilis L.) extraction residues. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 38 (3):384–390. doi:10.1080/15567036.2013.783656.
  • Fadhil, A. B., M. A. Alhayali, and L. I. Saeed. 2017. Date (Phoenix dactylifera L.) palm stones as a potential new feedstock for liquid bio-fuels production. Fuel 210:165–176. doi:10.1016/j.fuel.2017.08.059.
  • Fadhil, A. B., and B. A. Kareem. 2021. Co-pyrolysis of mixed date pits and olive stones: Identification of bio-oil and the production of activated carbon from bio-char. Journal of Analytical and Applied Pyrolysis 158:105249. doi:10.1016/j.jaap.2021.105249.
  • Fadillah, G., I. Fatimah, I. Sahroni, M. M. Musawwa, T. M. I. Mahlia, O. Muraza. 2021. Recent Progress in low-cost catalysts for pyrolysis of plastic waste to fuels. Catalysts 11 (7): 7. doi: 10.3390/catal11070837.
  • Foster, A. J., J. Jae, Y.-T. Cheng, G. W. Huber, and R. F. Lobo. 2012. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Applied Catalysis: A, General 423-424:154–161. doi:10.1016/j.apcata.2012.02.030.
  • French, R., and S. Czernik. 2010. Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology 91 (1):25–32. doi:10.1016/j.fuproc.2009.08.011.
  • Galarza, E. D., C. S. Fermanelli, L. B. Pierella, C. Saux, and M. S. Renzini. 2021. Influence of the sn incorporation method in ZSM-11 zeolites in the distribution of bio-oil products obtained from biomass pyrolysis. Journal of Analytical and Applied Pyrolysis 156:105116. doi:10.1016/j.jaap.2021.105116.
  • García, J. C., M. A. M. Zamudio, A. Perez, H. E. De Alva, and F. López. 2011. Paulownia as a raw material for the production of pulp by soda–anthraquinone cooking with or without previous autohydrolysis. Journal of Chemical Technology & Biotechnology 86 (4):608–615. doi:10.1002/jctb.2563.
  • Gerçel, H. F. 2011. Bio-oil production from onopordum acanthium L. by slow pyrolysis. Journal of Analytical and Applied Pyrolysis 92 (1):233–238. doi:10.1016/j.jaap.2011.06.002.
  • Guedes, R. E., A. S. Luna, and A. R. Torres. 2018. Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis 129:134–149. doi:10.1016/j.jaap.2017.11.019.
  • Guo, X., H. Yang, T. Wenga, R. Zhang, B. Liu, G. Chen, and L. Hou. 2022. Catalytic fast pyrolysis of Arundo donax in a two-stage fixed bed reactor over metal-modified HZSM-5 catalysts. Biomass & bioenergy 156:106316. doi:10.1016/j.biombioe.2021.106316.
  • Hassan, E. M., P. H. Steele, and L. Ingram. 2009. Characterization of fast pyrolysis bio-oils produced from pretreated pine wood. Applied Biochemistry and Biotechnology 154 (1):3–13. doi:10.1007/s12010-008-8445-3.
  • Heo, H. S., H. J. Park, Y.-K. Park, C. Ryu, D. J. Suh, Y.-W. Suh, J.-H. Yim, and S.-S. Kim. 2010. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresource Technology 101 (1):S91–S96. doi:10.1016/j.biortech.2009.06.003.
  • He, T., B. N. Vaidya, Z. D. Perry, P. Parajuli, and N. Joshee. 2016. Paulownia as a medicinal tree: Traditional uses and current advances. European Journal of Medicinal Plants 14 (1):1. doi:10.9734/EJMP/2016/25170.
  • Imran, A., E. A. Bramer, K. Seshan, and G. Brem. 2014. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate. Fuel Processing Technology 127:72–79. doi:10.1016/j.fuproc.2014.06.011.
  • Imran, A., E. A. Bramer, K. Seshan, and G. Brem. 2018. An overview of catalysts in biomass pyrolysis for production of biofuels. Biofuel Research Journal 5 (4):872–885. doi:10.18331/BRJ2018.5.4.2.
  • Ingemarsson, Å., U. Nilsson, M. Nilsson, J. R. Pedersen, and J. O. Olsson. 1998. Slow pyrolysis of spruce and pine samples studied with GC/MS and GC/FTIR/FID. Chemosphere 36 (14):2879–2889. doi:10.1016/S0045-6535(97)10245-4.
  • Joseph, J., C. Baker, S. Mukkamala, S. H. Beis, M. C. Wheeler, W. J. DeSisto, B. L. Jensen, and B. G. Frederick. 2010. Chemical shifts and lifetimes for nuclear magnetic resonance (NMR) analysis of biofuels. Energy & Fuels 24 (9):5153–5162. doi:10.1021/ef100504d.
  • Karagöz, S., T. Bhaskar, A. Muto, and Y. Sakata. 2005. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84 (7–8):875–884. doi:10.1016/j.fuel.2005.01.004.
  • Kim, E., H. Gil, S. Park, and J. Park. 2017. Bio-oil production from pyrolysis of waste sawdust with catalyst ZSM-5. Journal of Material Cycles & Waste Management 19 (1):423–431. doi:10.1007/s10163-015-0438-z.
  • Kim, J. W., H. W. Lee, I.-G. Lee, J.-K. Jeon, C. Ryu, S. H. Park, S.-C. Jung, and Y.-K. Park. 2014. Influence of reaction conditions on bio-oil production from pyrolysis of construction waste wood. Renewable Energy 65:41–48. doi:10.1016/j.renene.2013.07.009.
  • Kralova, I., and J. Sjöblom. 2010. Biofuels–renewable energy sources: a review. Journal of Dispersion Science and Technology 31 (3):ss. 409–425. doi:10.1080/01932690903119674.
  • Lauri, P., P. Havlík, G. Kindermann, N. Forsell, H. Böttcher, and M. Obersteiner. 2014. Woody biomass energy potential in 2050. Energy Policy 66:19–31. doi:10.1016/j.enpol.2013.11.033.
  • Li, B., W. Lv, Q. Zhang, T. Wang, and L. Ma. 2014. Pyrolysis and catalytic upgrading of pine wood in a combination of auger reactor and fixed bed. Fuel 129:61–67. doi:10.1016/j.fuel.2014.03.043.
  • Lin, X., Z. Zhang, S. Tan, F. Wang, Y. Song, Q. Wang, and C. U. Pittman. 2017. In line wood plastic composite pyrolyses and HZSM-5 conversion of the pyrolysis vapors. Energy Conversion & Management 141:206–215. doi:10.1016/j.enconman.2016.07.071.
  • Liu, N., R. Liu, M. Rahman, M. Sarker, M. Chai, C. Li, and J. Cai. 2020. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure. Fuel Processing Technology 199:106301. doi:10.1016/j.fuproc.2019.106301.
  • Liu, C., H. Wang, A. M. Karim, J. Sun, and Y. Wang. 2014. Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews 43 (22):7594–7623. doi:10.1039/C3CS60414D.
  • López, A., I. de Marco, B. M. Caballero, A. Adrados, and M. F. Laresgoiti. 2011. Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes. Waste Management 31 (8):1852–58. doi:10.1016/j.wasman.2011.04.004.
  • Luo, W., J. Wan, Z. Fan, Q. Hu, N. Zhou, M. Xia, M. Song, Z. Qi, and Z. Zhou. 2021. In-situ catalytic pyrolysis of waste tires over clays for high quality pyrolysis products. International Journal of Hydrogen Energy 46 (9):6937–6944. doi:10.1016/j.ijhydene.2020.11.170.
  • Ma, C., J. Geng, D. Zhang, and X. Ning. 2020. Non-catalytic and catalytic pyrolysis of Ulva prolifera macroalgae for production of quality bio-oil. Journal of the Energy Institute 93 (1):303–311. doi:10.1016/j.joei.2019.03.001.
  • Mâncio, A. A., K. M. B. da Costa, C. C. Ferreira, M. C. Santos, D. E. L. Lhamas, S. A. P. da Mota, R. A. C. Leão, R. O. M. A. de Souza, M. E. Araújo, L. E. P. Borges, et al. 2017. Process analysis of physicochemical properties and chemical composition of organic liquid products obtained by thermochemical conversion of palm oil. Journal of Analytical and Applied Pyrolysis 123:284–95. doi:10.1016/j.jaap.2016.11.017.
  • Mangesh, V. L., P. Tamizhdurai, P. Santhana Krishnan, S. Narayanan, S. Umasankar, S. Padmanabhan, and K. Shanthi. 2020. Green energy: Hydroprocessing waste polypropylene to produce transport fuel. Journal of Cleaner Production 276:124200. doi:10.1016/j.jclepro.2020.124200.
  • Manzano-Agugliaro, F., A. Alcayde, F. G. Montoya, A. Zapata-Sierra, and C. Gil. 2013. Scientific production of renewable energies worldwide: An overview. Renewable and Sustainable Energy Reviews 18:134–143. doi:10.1016/j.rser.2012.10.020.
  • Mendes, F. L., V. L. Ximenes, M. B. B. de Almeida, D. A. Azevedo, N. S. Tessarolo, and A. de Rezende Pinho. 2016. Catalytic pyrolysis of sugarcane bagasse and pinewood in a pilot scale unit. Journal of Analytical and Applied Pyrolysis 122:395–404. doi:10.1016/j.jaap.2016.08.001.
  • Mihalcik, D. J., C. A. Mullen, and A. A. Boateng. 2011. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. Journal of Analytical and Applied Pyrolysis 92 (1):224–232. doi:10.1016/j.jaap.2011.06.001.
  • Mohan, D., C. U. Pittman, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 20 (3):848–889. doi:10.1021/ef0502397.
  • Mullen, C. A., G. D. Strahan, and A. A. Boateng. 2009, May. Characterization of various fast-pyrolysis bio-oils by NMR spectroscopy †. Energy & Fuels 23(5):2707–2718. doi: 10.1021/ef801048b.
  • Ong, H. C., W.-H. Chen, A. Farooq, Y. Y. Gan, K. T. Lee, and V. Ashokkumar. 2019. Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renewable and Sustainable Energy Reviews 113:109266. doi:10.1016/j.rser.2019.109266.
  • Özbay, G., A. Özçifçi, and S. Karagöz. 2013. Catalytic pyrolysis of waste melamine coated chipboard. Environmental Progress & Sustainable Energy 32 (1):156–161. doi:10.1002/ep.10612.
  • Pang, S. 2019. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnology Advances 37 (4):589–597. doi:10.1016/j.biotechadv.2018.11.004.
  • Panwar, N. L., S. C. Kaushik, and S. Kothari. 2011. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews 15 (3):1513–1524. doi:10.1016/j.rser.2010.11.037.
  • Parikh, J., S. A. Channiwala, and G. K. Ghosal. 2005. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84 (5):487–494. doi:10.1016/j.fuel.2004.10.010.
  • Ren, X., M. Shanb Ghazani, H. Zhu, W. Ao, H. Zhang, E. Moreside, J. Zhu, P. Yang, N. Zhong, and X. Bi. 2022. Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review. Applied Energy 315:118970. doi:10.1016/j.apenergy.2022.118970.
  • Rodríguez-Seoane, P., B. Díaz-Reinoso, A. Moure, and H. Domínguez. 2020. Potential of Paulownia sp. for biorefinery. Industrial Crops and Products 155:112739. doi:10.1016/j.indcrop.2020.112739.
  • Şensöz, S., and M. Can. 2002. Pyrolysis of pine (Pinus brutia Ten.) chips: 1. Effect of pyrolysis temperature and heating rate on the product yields. Energy Sources 24 (4):347–355. doi:10.1080/00908310252888727.
  • Serrano, D., S. Sánchez-Delgado, and A. Horvat. 2017. Effect of sepiolite bed material on gas composition and tar mitigation during C. cardunculus L. gasification. Chemical Engineering Journal 317:1037–1046. doi:10.1016/j.cej.2017.02.106.
  • Shan Ahamed, T., S. Anto, T. Mathimani, K. Brindhadevi, and A. Pugazhendhi. 2021, Mar. Upgrading of bio-oil from thermochemical conversion of various biomass – mechanism, challenges and opportunities. Fuel 287:119329. doi: 10.1016/j.fuel.2020.119329.
  • Sun, P., M. Heng, S.-H. Sun, and J. Chen. 2011. Analysis of liquid and solid products from liquefaction of paulownia in hot-compressed water. Energy Conversion and Management 52 (2):924–933. doi:10.1016/j.enconman.2010.08.020.
  • Sun, P., M. Heng, S. Sun, and J. Chen. 2010. Direct liquefaction of paulownia in hot compressed water: Influence of catalysts. Energy 35 (12):5421–5429. doi:10.1016/j.energy.2010.07.005.
  • Sun, L., X. Zhang, L. Chen, B. Zhao, S. Yang, and X. Xie. 2016. Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis 121:342–346. doi:10.1016/j.jaap.2016.08.015.
  • Thangalazhy-Gopakumar, S., S. Adhikari, S. A. Chattanathan, and R. B. Gupta. 2012. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresource Technology 118:150–157. doi:10.1016/j.biortech.2012.05.080.
  • Uzun, B. B., and N. Sarioğlu. 2009. Rapid and catalytic pyrolysis of corn stalks. Fuel Processing Technology 90 (5):705–716. doi:10.1016/j.fuproc.2009.01.012.
  • Veses, A., M. Aznar, J. M. López, M. S. Callén, R. Murillo, and T. García. 2015. Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials. Fuel 141:17–22. doi:10.1016/j.fuel.2014.10.044.
  • Veses, A., M. Aznar, I. Martínez, J. D. Martínez, J. M. López, M. V. Navarro, M. S. Callén, R. Murillo, and T. García. 2014. Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresource Technology 162:250–258. doi:10.1016/j.biortech.2014.03.146.
  • Veses, A., B. Puértolas, M. S. Callén, and T. García. 2015. Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different metal cations on the bio-oil final properties. Microporous and Mesoporous Materials 209:189–196. doi:10.1016/j.micromeso.2015.01.012.
  • Villanueva, M., J. Proupín, J. A. Rodríguez-Añón, L. Fraga-Grueiro, J. Salgado, and N. Barros. 2011. Energetic characterization of forest biomass by calorimetry and thermal analysis. Journal of Thermal Analysis and Calorimetry 104 (1):61–67. doi:10.1007/s10973-010-1177-y.
  • Wan, Y., P. Chen, B. Zhang, C. Yang, Y. Liu, X. Lin, and R. Ruan. 2009. Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity. Journal of Analytical and Applied Pyrolysis 86 (1):161–167. doi:10.1016/j.jaap.2009.05.006.
  • Xu, C., and N. Lad. 2008. Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water. Energy & Fuels 22 (1):ss. 635–642. doi:10.1021/ef700424k.
  • Yorgun, S., and Y. E. Şimşek. 2008. Catalytic pyrolysis of Miscanthus$\times$ giganteus over activated alumina. Bioresource Technology 99 (17):8095–8100. doi:10.1016/j.biortech.2008.03.036.
  • Yorgun, S., N. Vural, and H. Demiral. 2009. Preparation of high-surface area activated carbons from paulownia wood by ZnCl2 activation. Microporous and Mesoporous Materials 122 (1–3):189–194. doi:10.1016/j.micromeso.2009.02.032.
  • Yorgun, S., and D. Yıldız. 2015a. Preparation and characterization of activated carbons from paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers 53:122–131. doi:10.1016/j.jtice.2015.02.032.
  • Yorgun, S., and D. Yıldız. 2015b. Slow pyrolysis of paulownia wood: Effects of pyrolysis parameters on product yields and bio-oil characterization. Journal of Analytical and Applied Pyrolysis 114:68–78. doi:10.1016/j.jaap.2015.05.003.
  • Yu, Y., X. Li, L. Su, Y. Zhang, Y. Wang, and H. Zhang. 2012. The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Applied Catalysis: A, General 447-448 (447):115–123. doi:10.1016/j.apcata.2012.09.012.
  • Zhang, Z., Q. Lu, X. Ye, W. Li, B. Hu, and C. Dong. 2015. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. Energy Conversion and Management 106:1309–1317. doi:10.1016/j.enconman.2015.10.063.
  • Zhang, B., Z.-P. Zhong, X.-B. Wang, K. Ding, and Z.-W. Song. 2015. Catalytic upgrading of fast pyrolysis biomass vapors over fresh, spent and regenerated ZSM-5 zeolites. Fuel Processing Technology 138:430–434. doi:10.1016/j.fuproc.2015.06.011.
  • Zhong, C., and X. Wei. 2004. A comparative experimental study on the liquefaction of wood. Energy 29 (11):1731–1741. doi:10.1016/j.energy.2004.03.096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.