86
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Co-pyrolysis of pine-cone and chicken feathers: a study to determine kinetic parameters, thermodynamic properties, and potential synergistic effects

, , ORCID Icon, &
Pages 1644-1657 | Received 26 Apr 2023, Accepted 01 Dec 2023, Published online: 11 Jan 2024

References

  • Amieva, E. J.-C., C. Velasco-Santos, A. L. Martínez-Hernández, J. L. Rivera-Armenta, A. M. Mendoza-Martínez, and V. M. Castaño. 2014. Composites from chicken feathers quill and recycled polypropylene. Journal of Composite Materials 49 (3):275–83. doi:10.1177/0021998313518359.
  • Ang, J. Y., P. C. Dee, A. B. Tan, and V. C. Bungay. 2020. Pyrolysis and carbon Dioxide gasification kinetics of pine cones and lignite blends. IOP Conference Series: Materials Science & Engineering 778 (1):012114. doi:https://doi.org/10.1088/1757-899X/778/1/012114.
  • Bamboriya, O. P., A. Varma, R. Shankar, V. Aniya, P. Mondal, and L. Thakur 2022. Thermal analysis and determination of kinetics and thermodynamics for pyrolysis of soybean de-oiled cake using thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry 147:1–12. https://doi.org/10.1007/s10973-022-11610-2.
  • Çepelioğullar, Ö., and A. E. Pütün. 2013. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis. Energy Conversion and Management 75:263–70. doi:10.1016/j.enconman.2013.06.036.
  • Ceylan, S., Y. Topcu, and Z. Ceylan. 2014. Thermal behaviour and kinetics of alga polysiphonia elongata biomass during pyrolysis. Bioresource Technology 171 (1):193–98. doi:10.1016/j.biortech.2014.08.064.
  • Chen, Y., L. Wang, M. Zhao, H. Ma, D. Chen, Y. Zhang, and J. Zhou. 2021. Comparative study on the pyrolysis behaviors of pine cone and pretreated pine cone by using TGA–FTIR and pyrolysis-GC/MS. ACS Omega 6 (5):3490–98. doi:10.1021/acsomega.0c04456.
  • Fernandez, A., L. R. Ortiz, D. Asensio, R. Rodriguez, and G. Mazza. 2020. Kinetic analysis and thermodynamics properties of air/steam gasification of agricultural waste. Journal of Environmental Chemical Engineering 8 (4):103829. doi:10.1016/j.jece.2020.103829.
  • Fernandez, A., L. Rodriguez-Ortiz, D. Asensio, R. Rodriguez, and G. Mazza. 2020. Kinetic analysis and thermodynamics properties of air/steam gasification of agricultural waste. Journal of Environmental Chemical Engineering 8 (4):103829. doi:10.1016/j.jece.2020.103829.
  • Font, R., J. A. Conesa, J. Moltó, and M. Muñoz. 2009. Kinetics of pyrolysis and combustion of pine needles and cones. Journal of Analytical and Applied Pyrolysis 85 (1–2):276–86. doi:10.1016/j.jaap.2008.11.015.
  • Font, R., J. A. Conesa, J. Moltó, and M. Muñoz 2009. Kinetics of pyrolysis and combustion of pine needles and cones. Journal of Analytical and Applied Pyrolysis 85 (1–2):276–86. https://doi.org/10.1016/j.jaap.2008.11.015.
  • Kim, S.-S., H. V. Ly, J. Kim, J. H. Choi, and H. C. Woo. 2013. Thermogravimetric characteristics and pyrolysis kinetics of alga Sagarssum sp. biomass. Bioresource Technology 139:242–48. doi:10.1016/j.biortech.2013.03.192.
  • Li, Z., C. Reimer, M. Picard, A. K. Mohanty, and M. Misra. 2020. Characterization of chicken feather biocarbon for use in sustainable biocomposites. Frontiers in Materials. 7. doi:10.3389/fmats.2020.00003.
  • Lopez-Velazquez, M. A., V. Santes, J. Balmaseda, and E. Torres-Garcia. 2013. Pyrolysis of orange waste: A thermo-kinetic study. Journal of Analytical and Applied Pyrolysis 99:170–77. doi:10.1016/j.jaap.2012.09.016.
  • Martín-Lara, M. A., G. Blázquez, A. Ronda, and M. Calero. 2016. Kinetic study of the pyrolysis of pine cone shell through non-isothermal thermogravimetry: Effect of heavy metals incorporated by biosorption. Renewable Energy 96:613–24. doi:10.1016/j.renene.2016.05.026.
  • McCurdy, A. T., A. J. Higham, M. R. Morgan, J. C. Quinn, and L. C. Seefeldt. 2014. Two-step process for production of biodiesel blends from oleaginous yeast and microalgae. Fuel 137:269–76. doi:10.1016/j.fuel.2014.07.099.
  • Mishra, R. K., K. Mohanty, and X. Wang. 2020. Pyrolysis kinetic behavior and py-GC–MS analysis of waste dahlia flowers into renewable fuel and value-added chemicals. Fuel 260 (September 2019):116338. doi:10.1016/j.fuel.2019.116338.
  • Mtshatsheni, K. N. G., A. E. Ofomaja, and E. B. Naidoo. 2019. Synthesis and optimization of reaction variables in the preparation of pine-magnetite composite for removal of methylene blue dye. South African Journal of Chemical Engineering 29:33–41. doi:10.1016/j.sajce.2019.05.002.
  • Muzayyin, M., S. Sukarni, and R. Wulandari (2020). Investigation on kinetic and thermodynamic parameters of cerbera manghas de-oiled seed as renewable energy during the pyrolysis process. AIP Conference Proceedings, 2228. 10.1063/5.0000900
  • Nakrani, D., T. Wani, and G. Srivastava. 2020. Simulation of pyrolysis and combustion of pine wood using two-step reaction scheme. 515–25. doi:10.14264/b582970.
  • Pérez-Montaño, F., C. Alías-Villegas, R. A. Bellogín, P. Del Cerro, M. R. Espuny, I. Jiménez-Guerrero, F. J. López-Baena, F. J. Ollero, and T. Cubo. 2014. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research 169 (5–6):325–36. doi:10.1016/j.micres.2013.09.011.
  • Rueda-Ordóñez, Y. J., and K. Tannous. 2015. Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresource Technology 196:136–44. doi:10.1016/j.biortech.2015.07.062.
  • Safdari, M.-S., E. Amini, D. R. Weise, and T. H. Fletcher. 2019. Heating rate and temperature effects on pyrolysis products from live wildland fuels. Fuel 242:295–304. doi:10.1016/j.fuel.2019.01.040.
  • Saffe, A., A. Fernandez, M. Echegaray, G. Mazza, and R. Rodriguez. 2019. Pyrolysis kinetics of regional agro-industrial wastes using isoconversional methods. Biofuels 10 (2):245–57. doi:10.1080/17597269.2017.1316144.
  • Santos, K. G., T. S. Lira, V. V. Murata, M. Gianesella, and M. A. S. Barrozo. 2010. Pyrolysis of sugarcane bagasse: A consecutive reactions kinetic model from TGA experiments. Materials Science Forum 660–661:593–98. doi:10.4028/www.scientific.net/MSF.660-661.593.
  • Sharma, C., S. Timorshina, A. Osmolovskiy, J. Misri, and R. Singh. 2022. Chicken feather waste valorization into nutritive protein hydrolysate: Role of novel thermostable keratinase from bacillus pacificus RSA27. Frontiers in Microbiology. 13. doi:10.3389/fmicb.2022.882902.
  • Slopiecka, K., P. Bartocci, and F. Fantozzi. 2012. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy 97:491–97. doi:10.1016/j.apenergy.2011.12.056.
  • Syguła, E., K. Świechowski, M. Hejna, I. Kunaszyk, and A. Białowiec. 2021. Municipal solid waste thermal analysis—pyrolysis kinetics and decomposition reactions. Energies 14 (15):4510. doi:10.3390/en14154510.
  • Torres-Sciancalepore, R., D. Asensio, D. Nassini, A. Fernandez, R. Rodriguez, G. Fouga, and G. Mazza. 2022. Assessment of the behavior of Rosa rubiginosa seed waste during slow pyrolysis process towards complete recovery: Kinetic modeling and product analysis. Energy Conversion and Management 272:116340. doi:10.1016/j.enconman.2022.116340.
  • Torres-Sciancalepore, R., A. Fernandez Brizuela, D. Asensio, M. Riveros-Gomez, M. Fabani, G. Fouga, R. Rodriguez, and G. Mazza. 2022. Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds. Energy Conversion and Management 252:115076. doi:10.1016/j.enconman.2021.115076.
  • Varma, A. K., and P. Mondal. 2017. Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using Thermogravimetric analysis. Journal of Energy Resources Technology 138 (September 2016):1–11. doi:10.1115/1.4032729.
  • Zhu, F., Q. Feng, Y. Xu, R. Liu, and K. Li 2014. Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data. Journal of Thermal Analysis and Calorimetry 119:651–57. https://doi.org/10.1007/s10973-014-4179-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.