68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Surrogate model of adaptive thermal comfort of a social housing in the Dominican Republic micro-climates: a predictive approach toward sustainable buildings

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 804-819 | Received 11 Oct 2023, Accepted 01 Dec 2023, Published online: 07 Dec 2023

References

  • Albatayneh, A., M. N. Assaf, R. Albadaineh, A. Juaidi, R. Abdallah, A. Zabalo, and F. Manzano-Agugliaro. 2022. Reducing the operating energy of buildings in arid climates through an adaptive approach. Sustainability (Switzerland) 14 (20):1–18. doi:10.3390/su142013504.
  • Amasyali, K., and N. El-Gohary. 2021. Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings. Renewable and Sustainable Energy Reviews 142:142. doi:10.1016/j.rser.2021.110714.
  • Amber, K. P., M. W. Aslam, F. Ikram, A. Kousar, H. M. Ali, N. Akram, K. Afzal, and H. Mushtaq. 2018. Heating and cooling degree-days maps of Pakistan. Energies 11 (1):1–12. doi:10.3390/en11010094.
  • Aparicio-Ruiz, P., E. Barbadilla-Martín, J. Guadix, and J. Muñuzuri. 2021. A field study on adaptive thermal comfort in Spanish primary classrooms during summer season. Building and Environment 203:203. doi:10.1016/j.buildenv.2021.108089.
  • Bienvenido-Huertas, D., D. Sánchez-García, A. Pérez-Fargallo, and C. Rubio-Bellido. 2020. Optimization of energy saving with adaptive setpoint temperatures by calculating the prevailing mean outdoor air temperature. Building and Environment 170:106612. doi:10.1016/j.buildenv.2019.106612.
  • Cardoso-Fernández, V., A. Bassam, O. May Tzuc, C. M. A. Barrera, J. D. J. Chan-González, M. A. Escalante Soberanis, N. Velázquez-Limón, and L. J. Ricalde. 2023. Global sensitivity analysis of a generator-absorber heat exchange (GAX) system’s thermal performance with a hybrid energy source: An approach using artificial intelligence models. Applied Thermal Engineering 218:119363. doi:10.1016/j.applthermaleng.2022.119363.
  • Castillo, J. A., and G. Huelsz. 2017. A methodology to evaluate the indoor natural ventilation in hot climates: Heat balance index. Building and Environment 114:366–73. doi:10.1016/j.buildenv.2016.12.027.
  • Cetina-Quiñones, A. J., I. Sanchez-Dominguez, A. Casillas-Reyes, and A. Bassam. 2023. 9E analysis of a flat plate solar collector system implementation: A new approach based on digital twin model coupled with global sensitivity analysis and multi-objective optimization. Journal of Renewable and Sustainable Energy 15 (3). doi:10.1063/5.0151617.
  • Chan, S. Y., and C. K. Chau. 2019. Development of artificial neural network models for predicting thermal comfort evaluation in urban parks in summer and winter. Building and Environment 164:106364. doi:10.1016/j.buildenv.2019.106364.
  • Chaudhuri, T., Y. C. Soh, H. Li, and L. Xie. 2019. A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings. Applied Energy 248 (April):44–53. doi:10.1016/j.apenergy.2019.04.065.
  • Chegari, B., M. Tabaa, E. Simeu, F. Moutaouakkil, and H. Medromi. 2021. Multi-objective optimization of building energy performance and indoor thermal comfort by combining artificial neural networks and metaheuristic algorithms. Energy and Buildings 239:110839. doi:10.1016/j.enbuild.2021.110839.
  • Drakou, A., F. Sofos, T. E. Karakasidis, and A. Tsangrassoulis. 2023. Adaptive thermal comfort model and active occupant behaviour in a mixed-mode apartment. A synergy to sustainability. IOP Conference Series: Earth and Environmental Science 1196 (1):12097. doi:10.1088/1755-1315/1196/1/012097.
  • Fan, G., Y. Chen, and Q. Deng. 2023. Thermal comfort. In Personal comfort systems for improving indoor thermal comfort and air quality, ed.F. Wang, B. Yang, Q. Deng and M. Luo, 1–23. Singapore: Springer. doi:10.1007/978-981-99-0718-2_1.
  • Félix, J., L. Del Portillo, and R. Izquierdo (2018). Análisis Comparativo De Las Diferentes Zonas Climáticas De La República Dominicana, Porto, Portugal, 4:865–76.
  • García Frómeta, Y., L. Ruiz Valero, and J. Cuadrado Rojo. 2019. Indoor temperature and relative humidity assessment of three construction systems for Dominican social housing in different micro-climates: A modelling study. Indoor and Built Environment 28 (5):693–710. doi:10.1177/1420326X18792968.
  • Ghanizadeh, A. R., N. Heidarabadizadeh, and F. Jalali. 2020. Artificial neural network back-calculation of flexible pavements with sensitivity analysis using Garson’s and connection weights algorithms. Innovative Infrastructure Solutions 5 (2):1–19. doi:10.1007/s41062-020-00312-z.
  • Gopi, A., P. Sharma, K. Sudhakar, W. K. Ngui, I. Kirpichnikova, and E. Cuce. 2023. Weather impact on solar farm performance: A comparative analysis of machine learning techniques. Sustainability 15 (1). doi:10.3390/su15010439.
  • He, X., and S. Xu. 2010. Artificial neural networks. Process Neural Networks: Theory and Applications 1: 20–42.
  • Humphreys, M., and F. Nicol. 2018. Principles of adaptive thermal comfort. Sustainable Houses and Living in the Hot-Humid Climates of Asia 1: 103–13.
  • Indraganti, M., and D. Boussaa. 2017. A method to estimate the heating and cooling degree-days for different climatic zones of Saudi Arabia. Building Services Engineering Research and Technology 38 (3):327–50. doi:10.1177/0143624416681383.
  • Kayri, M. 2016. Predictive abilities of Bayesian regularization and Levenberg–Marquardt algorithms in artificial neural networks: A comparative empirical study on social data. Mathematical and Computational Applications 21 (2):20. doi:10.3390/mca21020020.
  • Kim, J., S. Schiavon, and G. Brager. 2018. Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control. Building and Environment 132:114–24. doi:10.1016/j.buildenv.2018.01.023.
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15 (3):259–63. doi:10.1127/0941-2948/2006/0130.
  • Li, L., Y. Fu, J. C. H. Fung, H. Qu, and A. K. H. Lau. 2021. Development of a back-propagation neural network and adaptive grey wolf optimizer algorithm for thermal comfort and energy consumption prediction and optimization. Energy and Buildings 253:111439. doi:10.1016/j.enbuild.2021.111439.
  • López-Pérez, L. A., and J. J. Flores-Prieto. 2023. Adaptive thermal comfort approach to save energy in tropical climate educational building by artificial intelligence. Energy 263:125706. doi:10.1016/j.energy.2022.125706.
  • May Tzuc, O., O. Rodríguez Gamboa, R. Aguilar Rosel, M. Che Poot, H. Edelman, M. Jiménez Torres, and A. Bassam. 2021. Modeling of hygrothermal behavior for green facade’s concrete wall exposed to nordic climate using artificial intelligence and global sensitivity analysis. Journal of Building Engineering 33 (July 2020):101625. doi:10.1016/j.jobe.2020.101625.
  • Mora, R., and R. Bean. 2018. Thermal comfort: Designing for people. ASHRAE Journal 60 (2):40–46.
  • Nasruddin, S., P. Satrio, T. M. I. Mahlia, N. Giannetti, and K. Saito. 2019. Optimization of HVAC system energy consumption in a building using artificial neural network and multi-objective genetic algorithm. Sustainable Energy Technologies and Assessments 35:48–57. doi:10.1016/j.seta.2019.06.002.
  • Ozarisoy, B., and H. Altan. 2021. Regression forecasting of ‘neutral’ adaptive thermal comfort: A field study investigation in the south-eastern Mediterranean climate of Cyprus. Building and Environment 202:108013. doi:10.1016/j.buildenv.2021.108013.
  • Peña Suárez, J. N., and V. J. Del Campo Díaz. 2021. Degree-days in a Caribbean and tropical country: The Dominican Republic’s case. International Journal of Ambient Energy 42 (7):795–800. doi:10.1080/01430750.2019.1566175.
  • Pérez-Fargallo, A., J. A. Pulido-Arcas, C. Rubio-Bellido, M. Trebilcock, B. Piderit, and S. Attia. 2018. Development of a new adaptive comfort model for low income housing in the central-south of Chile. Energy and Buildings 178:94–106. doi:10.1016/j.enbuild.2018.08.030.
  • Quintana-Gallardo, A., and I. Guillén-Guillamón. 2022. Social housing in the Dominican Republic, a study on thermal comfort. Proceedings, Dominican Republic.
  • Remund, J., S. Müller, M. Schmutz, and P. Graf. 2020. Meteonorm Version 8. METEOTEST. www.Meteotest.Com.
  • Santamouris, M., S. Haddad, F. Fiorito, P. Osmond, L. Ding, D. Prasad, X. Zhai, and R. Wang. 2017. Urban heat island and overheating characteristics in Sydney, Australia. An analysis of multiyear measurements. Sustainability 9 (5):712. doi:10.3390/su9050712.
  • Sha, H., P. Xu, C. Hu, Z. Li, Y. Chen, and Z. Chen. 2019. A simplified HVAC energy prediction method based on degree-day. Sustainable Cities and Society 51:101698. doi:10.1016/j.scs.2019.101698.
  • Simmonds, P. 2022. Using ASHRAE standard 55 adaptive comfort method for practical Applications. REHVA 14th HVAC World Congress 1–8. doi:10.34641/clima.2022.83.
  • Soflaei, F., M. Shokouhian, A. Tabadkani, H. Moslehi, and U. Berardi. 2020. A simulation-based model for courtyard housing design based on adaptive thermal comfort. Journal of Building Engineering 31 (March):101335. doi:10.1016/j.jobe.2020.101335.
  • Thapa, S., and M. Indraganti. 2020. Evaluation of thermal comfort in two neighboring climatic zones in Eastern India—an adaptive approach. Energy and Buildings 213:109767. doi:10.1016/j.enbuild.2020.109767.
  • Vázquez-Torres, C. E., A. Beizaee, and D. Bienvenido-Huertas. 2022. The impact of human occupancy in thermal performance of a historic religious building in sub-humid temperate climate. Energy and Buildings 259:259. doi:10.1016/j.enbuild.2022.111912.
  • Zhang, H., R. Yang, S. You, W. Zheng, X. Zheng, and T. Ye. 2018. The CPMV index for evaluating indoor thermal comfort in buildings with solar radiation. Building and Environment 134:1–9. doi:10.1016/j.buildenv.2018.02.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.