129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quality analysis of machine learning methods applied to the geothermal potential assessment: a case study

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 854-871 | Received 08 Aug 2023, Accepted 30 Nov 2023, Published online: 13 Dec 2023

References

  • Abraham, E., O. Itumoh, C. Chukwu, and O. Rock. 2019. Geothermal energy reconnaissance of southeastern Nigeria from analysis of aeromagnetic and gravity data. Pure and Applied Geophysics 176 (4):1615–38. doi:10.1007/s00024-018-2028-1.
  • Alqahtani, F., M. Ehsan, M. Abdulfarraj, E. Aboud, Z. Naseer, N. N. El-Masry, and M. F. Abdelwahed. 2023. Machine learning techniques in predicting bottom hole temperature and remote sensing for assessment of geothermal potential in the Kingdom of Saudi Arabia. Sustainability 15:12718. doi:10.3390/su151712718.
  • Anderson, A., and B. Rezaie. 2019. Geothermal technology: Trends and potential role in a sustainable future. Applied Energy 248:18–34. doi:10.1016/j.apenergy.2019.04.102.
  • Bai, H.-W., Q.-Q. Cao, and S.-B. An. 2023. Mind evolutionary algorithm optimization in the prediction of satellite clock bias using the back propagation neural network. Scientific Reports 13 (1):2095. doi:10.1038/s41598-023-28855-y.
  • Benavoli, A., G. Corani, J. Demsar, and M. Zaffalon. 2017. Time for a change: A tutorial for comparing multiple classifiers through Bayesian analysis. Journal of Machine Learning Research 18. doi:10.48550/arXiv.1606.04316.
  • Breiman, L., J. Friedman, and C. J. Stone. 1984. Classification and regression trees. 1st ed. New York: CRC Press. https://www.taylorfrancis.com/books/mono/10.1201/9781315139470/classification-regression-trees-leo-breiman.
  • Calvin, W. M., E. F. Littlefield, and C. Kratt. 2015. Remote sensing of geothermal-related minerals for resource exploration in Nevada. GEOTHERMICS 53:517–26. doi:10.1016/j.geothermics.2014.09.002.
  • Cheng, X.-G., W. Qiao, and H. He. 2023. Study on deep learning methods for coal burst risk prediction based on mining-induced seismicity quantification. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 9 (145). doi:10.1007/s40948-023-00684-3.
  • Chen, F., T. Liu, X.-L. Gu, Y. Lyv, and G.-Y. He. 2016. Relationship between geothermal water distribution and geological structure in Xinjiang. West-China Exploration Engineering 28 (2):144–148.
  • Chen, H., X.-B. Xie, E.-Q. Liu, L. Zhou, and L.-J. Yan. 2021. Application of infrared remote sensing and magnetotelluric technology in geothermal resource exploration: A case study of the wuerhe area, Xinjiang. Remote Sens-Basel 13 (24):4989. doi:10.3390/rs13244989.
  • Elbarbary, S., M. A. Zaher, H. Mesbah, A. El-Shahat, and A. Embaby. 2018. Curie point depth, heat flow and geothermal gradient maps of Egypt deduced from aeromagnetic data. Renewable & Sustainable Energy Reviews 91:620–29. doi:10.1016/j.rser.2018.04.071.
  • Feng, J., Z.-X. Zhu, T.-Y. Zhao, Z.-L. Chen, X.-X. Gu, G.-X. Meng, S.-Q. Xu, J.-T. Tian, and P. Li. 2022. Subdivision of tectonic units and its metallogenesis in Xinjiang. Geology in China 49 (4):1154–1178. doi:10.12029/gc20220409.
  • Flach, P., and M. Kull. 2015. Precision-recall-gain curves: Pr analysis done right. Advances in Neural Information Processing Systems 28 (1):838–846.
  • Flores, M. J., J. A. Gámez, and A. M. Martínez. 2012. Supervised classification with Bayesian networks: A review on models and applications. Intelligent Data Analysis for Real-Life Applications: Theory and Practice 72–102. doi:10.4018/978-1-4666-1806-0.ch005.
  • Hao, T.-T., W.-J. Hu, J. Xing, L.-T. Hu, Y. Xu, J.-X. Qin, S.-H. Liu, and S.-M. Lei. 2014. The Moho depth map (1: 5000000) in the land and seas of China and adjacent areas and its geological implications. Chinese Journal of Geophysics (In Chinese) 57 (12):3869–3883. doi:10.6038/cjg20141202.
  • Jiang, C.-R., and L.-H. Chen. 2020. Filtering-based approaches for functional data classification. WIRES COMPUT STAT 12 (4). doi:10.1002/wics.1490.
  • Kamran, M., N. M. Shahani, and D. J. Armaghani. 2022. Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches. Geomechanics and Engineering 30 (2):107–121. doi:10.12989/gae.2022.30.2.107.
  • Kana, J. D., N. Djongyang, D. Raidandi, D. Raïdandi, N. P. Nouck, and A. Dadjé. 2015. A review of geophysical methods for geothermal exploration. Renewable and Sustainable Energy Reviews 44:87–95. doi:10.1016/j.rser.2014.12.026.
  • Kardani, N., M. Aminpour, M. N. A. Raja, G. Kumar, A. Bardhan, and M. Nazem. 2022. Prediction of the resilient modulus of compacted subgrade soils using ensemble machine learning methods. Transportation Geotechnics 36:100827. doi:10.1016/j.trgeo.2022.100827.
  • Lacasse, C. M., E. M. G. Prado, S. N. P. Guimarães, O. A. de Souza Filho, and F. P. Vieira. 2022. Integrated assessment and prospectivity mapping of geothermal resources for EGS in Brazil. Geothermics 100:102321. doi:10.1016/j.geothermics.2021.102321.
  • Liao, Y.-Z., Y.-G. Liu, F. Liu, S. Wei, and H. Duan. 2022. Lithospheric thermal structure in Jinggangshan City: Implications for high geothermal background. FRONT EARTH SC-SWITZ 10. doi:10.3389/feart.2022.854232.
  • Liu, F., and X. Long. 2022. Investigation on geological structure and geothermal resources using seismic exploration. GEOTHERMICS 106:102572. doi:10.1016/j.geothermics.2022.102572.
  • Liu, X.-N., Z.-X. Zhang, G.-S. Zhang, and G.-Y. Zhang. 2022. A hybrid model integrating improved fuzzy c-means and optimized mixed kernel relevance vector machine for classification of coal and gas outbursts. Neural Processing Letters 54 (6):5615–5641. doi:10.1007/s11063-022-10877-8.
  • Ma, D., H.-Y. Duan, X. Cai, Z.-H. Li, Q. Li, and Q. Zhang. 2018. A global optimization-based method for the prediction of water inrush hazard from mining floor. Water 10 (11). doi: 10.3390/w10111618.
  • Meng, F.-N., X.-J. Liang, C.-L. Xiao, and G. Wang. 2021. Geothermal resource potential assessment utilizing GIS-based multi criteria decision analysis method. GEOTHERMICS 89:101969. doi:10.1016/j.geothermics.2020.101969.
  • Miao, F.-S., F.-C. Zhao, Y.-P. Wu, L.-W. Li, and Á. Török. 2023. Landslide susceptibility mapping in Three Gorges Reservoir area based on GIS and boosting decision tree model. Stochastic Environmental Research and Risk Assessment: Research Journal 37:2283–303. doi:10.1007/s00477-023-02394-4.
  • Moeck, I. S. 2014. Catalog of geothermal play types based on geologic controls. Renewable & Sustainable Energy Reviews 37:867–82. doi:10.1016/j.rser.2014.05.032.
  • Moraga, J., H. S. Duzgun, M. Cavur, and H. Soydan. 2022. The geothermal artificial intelligence for geothermal exploration. Renewable Energy 192:134–49. doi:10.1016/j.renene.2022.04.113.
  • Mordensky, S. P., J. J. Lipor, J. DeAngelo, E. R. Burns, and C. R. Lindsey. 2022. Predicting geothermal favorability in the Western United States by using machine learning: Addressing challenges and developing solutions. In: Paper presented at the 47th Stanford Geothermal Workshop, Stanford, California (Virtual).
  • Mordensky, S. P., J. J. Lipor, J. DeAngelo, E. R. Burns, and C. R. Lindsey. 2023. When less is more: How increasing the complexity of machine learning strategies for geothermal energy assessments may not lead toward better estimates. Geothermics 110:102662. doi:10.1016/j.geothermics.2023.102662.
  • Pappoe, J. A., A. Yoshikawa, A. Kandil, and A. Mahrous. 2023. A machine learning approach combined with wavelet analysis for automatic detection of Pc5 geomagnetic pulsations observed at geostationary orbits. Advances in Space Research. doi:10.1016/j.asr.2023.11.001.
  • Pasquale, V., M. Verdoya, and P. Chiozzi. 2014. Heat flow and geothermal resources in northern Italy. Renewable & Sustainable Energy Reviews 36:277–85. doi:10.1016/j.rser.2014.04.075.
  • Polikar, R. 2007. Bootstrap-inspired techniques in computation intelligence. IEEE Signal Processing Magazine 24 (4):59–72. doi:10.1109/MSP.2007.4286565.
  • Qin, X.-M., Z.-X. Liu, Y.-W. Liu, S. Liu, B. Yang, L.-R. Yin, M.-Z. Liu, and W.-F. Zheng. 2022. User OCEAN personality model construction method using a BP neural network. Electronics 11 (19):3022. doi:10.3390/electronics11193022.
  • Rodriguez-Gomez, C., G. Kereszturi, R. Reeves, A. Rae, R. Pullanagari, P. Jeyakumar, and J. Procter. 2021. Lithological mapping of Waiotapu geothermal field (New Zealand) using hyperspectral and thermal remote sensing and ground exploration techniques. Geothermics 96:102195. doi:10.1016/j.geothermics.2021.102195.
  • Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. Learning representations by back-propagating errors. NATURE 323 (6088):533–36. doi:10.1038/323533a0.
  • Simiyu, S. M., and G. R. Keller. 2000. Seismic monitoring of the olkaria geothermal area, Kenya rift valley. Journal of Volcanology and Geothermal Research 95 (1–4):197–208. doi:10.1016/S0377-0273(99)00124-9.
  • Song, H.-Y., A.-Y. Liu, G. Li, and X.-Y. Liu. 2021. Bayesian bootstrap aggregation for tourism demand forecasting. International Journal of Tourism Research 23 (5):914–927. doi:10.1002/jtr.2453.
  • Strobl, C., A. L. Boulesteix, and T. Augustin. 2007. Unbiased split selection for classification trees based on the Gini index. Computational Statistics and Data Analysis 52 (1):483–501. doi:10.1016/j.csda.2006.12.030.
  • Suzuki, Y., H. Muraoka, and H. Asanuma. 2021. Thermal monitoring of the lithosphere by the interaction of deep low-frequency and ordinary high-frequency earthquakes in northeastern Japan. Energies 14 (6). doi: 10.3390/en14061546.
  • Talekar, B., and S. Agrawal. 2020. A detailed review on decision tree and random forest. Bioscience Biotechnology Research C 13 (14):245–248. doi:10.21786/bbrc/13.14/57.
  • Tinti, F., S. Kasmaee, M. Elkarmoty, S. Bonduà, and V. Bortolotti. 2018. Suitability evaluation of specific shallow geothermal technologies using a GIS-Based multi-criteria decision analysis implementing the analytic hierarchic process. Energies 11 (2):457. doi:10.3390/en11020457.
  • UNFCCC. 2022. Decision 1/CMA.3, Glasgow Climate Pact, advance version, FCCC/PA/CMA/2021/10/Add.1.
  • van der Meer, F., C. Hecker, F. van Ruitenbeek, H. van der Werff, C. de Wijkerslooth, and C. Wechsler. 2014. Geologic remote sensing for geothermal exploration: A review. International Journal of Applied Earth Observation and Geoinformation 33:255–269. doi:10.1016/j.jag.2014.05.007.
  • Wang, Y., Y.-X. Liu, and B.-H. Gu. 2022. Cop26: Progress, challenges, and outlook. Advances in Atmospheric Sciences 39 (8):1209–1216. doi:10.1007/s00376-022-2097-z.
  • Wang, D., Q.-L. Xu, L. Chen, and J.-F. Lu. 1999. A study of underground hot water of Xinjiang in relation to earthquakes. Seismology and Geology 1:58–62.
  • Xu, W.-C., Y.-S. Hung, M. Niranjan, and M.-F. Shen. 2010. Asymptotic mean and variance of gini correlation for bivariate normal samples. IEEE Transactions on Signal Processing 58 (2):522–534. doi:10.1109/TSP.2009.2032448.
  • Xu, S.-L., Y.-X. Song, and X.-L. Hao. 2022. A comparative study of shallow machine learning models and deep learning models for landslide susceptibility assessment based on imbalanced data. FORESTS 13 (11):1908. doi:10.3390/f13111908.
  • Yalcin, M., and F. K. Gul. 2017. A GIS-based multi criteria decision analysis approach for exploring geothermal resources: akarcay basin (Afyonkarahisar). GEOTHERMICS 67:18–28. doi:10.1016/j.geothermics.2017.01.002.
  • Yao, J.-Y., S.-W. Qin, S.-S. Qiao, X.-W. Liu, L.-S. Zhang, and J.-J. Chen. 2022. Application of a two-step sampling strategy based on deep neural network for landslide susceptibility mapping. Bulletin of Engineering Geology and the Environment 81 (4). doi:10.1007/s10064-022-02615-0.
  • Yildirim, N., and E. S. Umdu. 2022. Geothermal energy in developing countries–the dilemma between renewable and nonrenewable. Renewable Energy and Sustainability 227–262. doi:10.1016/B978-0-323-88668-0.00003-6.
  • Zaman, M., S. Kaul, and M. Ahmed. 2020. Analytical comparison between the information gain and Gini index using historical geographical data. International Journal of Advanced Computer Science 11 (5):429–440. doi:10.14569/IJACSA.2020.0110557.
  • Zhang, J.-F., Y.-H. Wang, Y.-T. Sun, and G.-C. Li. 2020. Strength of ensemble learning in multiclass classification of rockburst intensity. International Journal for Numerical and Analytical Methods 44 (13):1833–1853. doi:10.1002/nag.3111.
  • Zhu, J., P. Li, and H.-B. Chen. 2023. Exploration of geothermal resources using comprehensive electromagnetic method. Energy Exploration & Exploitation 41 (5):1676–96. doi:10.1177/01445987231168710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.