163
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing and optimizing the efficacy of synthesized CaO-based nano-catalysts for biodiesel production

, , &
Pages 872-887 | Received 04 Oct 2023, Accepted 04 Dec 2023, Published online: 13 Dec 2023

References

  • Aghel, B., A. Gouran, E. Parandi, B. Hadi Jumeh, and H. Rashidi Nodeh. 2022. Production of biodiesel from high acidity waste cooking oil using nano gO@MgO catalyst in a microreactor. Renewable Energy 200 (September):294–302. Elsevier Ltd. doi:10.1016/j.renene.2022.09.045.
  • Ajala, E. O., A. B. Ehinmowo, M. A. Ajala, O. A. Ohiro, F. A. Aderibigbe, and A. O. Ajao. 2022. Optimisation of CaO-Al2O3-SiO2-CaSO4-based catalysts performance for methanolysis of waste lard for biodiesel production using response surface methodology and meta-heuristic algorithms. Fuel Processing Technology 226 (July 2021):107066. Elsevier B.V. doi:10.1016/j.fuproc.2021.107066.
  • Bhatia, S. K., R. Gurav, T. Rim Choi, H. Joong Kim, S. Yeon Yang, H. Suk Song, J. Young Park, Y. L. Park, Y. Hoon Han, Y. Keun Choi, et al. 2020. Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from Cork Biochar. Bioresource Technology 302 (December 2019):122872. Elsevier:122872. doi:10.1016/j.biortech.2020.122872.
  • Borah, M. J., A. Das, V. Das, N. Bhuyan, and D. Deka. 2019. Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel 242 (May 2018):345–54. Elsevier. doi:10.1016/j.fuel.2019.01.060.
  • Chamola, R., M. Fazil Khan, A. Raj, M. Verma, and S. Jain. 2019. Response surface methodology based Optimization of in situ transesterification of dry algae with methanol, H2SO4 and NaOH. Fuel 239 (August 2018):511–20. Elsevier. doi:10.1016/j.fuel.2018.11.038.
  • Chanthon, N., N. Munbupphachart, K. Ngaosuwan, W. Kiatkittipong, D. Wongsawaeng, W. Mens, S. Lalthazuala Rokhum, and S. Assabumrungrat. 2023. Metal loading on CaO/Al2O3 pellet catalyst as a booster for transesterification in biodiesel production. Renewable Energy 218:119336. doi:10.1016/j.renene.2023.119336.
  • de Albuquerque Landi, F., C. F. Fabiana, B. Castellani, F. Cotana, and A. Laura Pisello. 2022. Environmental assessment of four waste cooking oil valorization pathways. Waste Management 138:219–33. doi:10.1016/j.wasman.2021.11.037.
  • Eldiehy, K. S. H., M. Gohain, N. Daimary, D. Borah, M. Mandal, and D. Deka. 2022. Radish (Raphanus Sativus L.) leaves: A novel source for a highly Efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and scenedesmus obliquus oil. Renewable Energy 191:888–901. Elsevier Ltd. doi:10.1016/j.renene.2022.04.070.
  • El-Sherif, A. A., A. M. Hamad, E. Shams-Eldin, H. Allah Abdelnabi Eid Mohamed, A. M. Ahmed, M. A. Mohamed, Y. S. Abdelaziz, F. Al Zahraa Sayed, E. A. Abu El Qassem Mahmoud, T. M. Abd El-Daim, et al. 2023. Power of recycling waste cooking oil into biodiesel via green CaO-Based eggshells/Ag heterogeneous nanocatalyst. Renewable Energy 202 (December 2022):1412–23. Elsevier Ltd. doi:10.1016/j.renene.2022.12.041.
  • Erchamo, Y. S., T. Tesfaye Mamo, G. Adam Workneh, and Y. Setarge Mekonnen. 2021. Improved biodiesel production from waste cooking oil with mixed methanol–ethanol using enhanced eggshell-derived CaO nano-catalyst. Scientific Reports 11 (1):1–12. Nature Publishing Group UK. doi:10.1038/s41598-021-86062-z.
  • Foo, W. H., S. Sze Ning Koay, S. Reen Chia, W. Y. Chia, D. Ying Ying Tang, S. Nomanbhay, and K. Wayne Chew. 2022. Recent advances in the Conversion of waste cooking oil into value-added products: A review. Fuel 324 (September 2021). doi:10.1016/j.fuel.2022.124539.
  • Foo, W. H., W. Yi Chia, D. Ying Ying Tang, S. Sze Ning Koay, S. Shee Lim, and K. Wayne Chew. 2021. The conundrum of waste cooking oil: Transforming hazard into Energy. Journal of Hazardous Materials 417 (May):126129. Elsevier B.V. doi:10.1016/j.jhazmat.2021.126129.
  • Garg, A., and S. Jain. 2020. Process parameter Optimization of biodiesel production from algal oil by response surface methodology and artificial neural networks. Fuel 277:118254. Elsevier. doi:10.1016/j.fuel.2020.118254.
  • Hosseinzadeh-Bandbafha, H., A. Sattar Nizami, S. A. Kalogirou, V. Kumar Gupta, Y. Kwon Park, A. Fallahi, A. Sulaiman, M. Ranjbari, H. Rahnama, M. Aghbashlo, et al. 2022. Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review. Renewable and Sustainable Energy Reviews 161 (April):112411. Elsevier Ltd. doi:10.1016/j.rser.2022.112411.
  • Huang, J., J. Wang, Z. Huang, T. Liu, and H. Li. 2023. Photothermal technique-enabled ambient production of microalgae biodiesel: Mechanism and life cycle assessment. Bioresource Technology 369:128390. Elsevier. doi:10.1016/j.biortech.2022.128390.
  • IMARC. 2023. No title. India Used Cooking Oil Market: Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023-2028.
  • Jume, B. H., M. Ali Gabris, H. Rashidi Nodeh, S. Rezania, and J. Cho. 2020. Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles. Renewable Energy 162:2182–89. Elsevier Ltd. doi:10.1016/j.renene.2020.10.046.
  • Kedir, W. M., K. Teshome Wondimu, and G. Shifera Weldegrum. 2023. Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell. Heliyon 9 (5):e16475. Elsevier Ltd. doi:10.1016/j.heliyon.2023.e16475.
  • Laskar, I. B., K. Rajkumari, R. Gupta, S. Chatterjee, B. Paul, and L. Rokhum. 2018. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Advances 8 (36):20131–42. doi:10.1039/c8ra02397b.
  • Liu, Y., R. S. Biju Theruvil Sayed, S. M. Alshahrani, K. Venkatesan, K. Y. Thajudeen, M. Al-Bahrani, S. K. Hadrawi, and G. Yasin. 2023. Novel and robust machine learning model to optimize biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst: sustainable green energy. Environmental Technology & Innovation 30:103018. Elsevier B.V. doi:10.1016/j.eti.2023.103018.
  • Maneerung, T., S. Kawi, Y. Dai, and C. Hwa Wang. 2016. Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management 123:487–97. Elsevier Ltd. doi:10.1016/j.enconman.2016.06.071.
  • Mawlid, O. A., H. H. Abdelhady, and M. S. El-Deab. 2022. Boosted biodiesel production from waste cooking oil using novel SrO/MgFe2O4 magnetic nanocatalyst at low temperature: Optimization process. Energy Conversion and Management 273 (November):116435. Elsevier Ltd. doi: 10.1016/j.enconman.2022.116435.
  • Mohadesi, M., B. Aghel, A. Gouran, and M. Hamed Razmehgir. 2022. Transesterification of waste cooking oil using Clay/CaO as a solid base catalyst. Energy 242:122536. Elsevier Ltd. doi:10.1016/j.energy.2021.122536.
  • Mohamad, M., and N. Ngadi. 2014. Effect of TiO2 mixed CaO catalyst in palm oil transesterification. Applied Mechanics and Materials 695:319–22. doi:10.4028/www.scientific.net/amm.695.319.
  • Mohamad, M., N. Ngadi, S. Wong, N. Y. Yahya, I. M. Inuwa, and N. S. Lani. 2018. Synthesis and characterization of CaO-TiO2 for transesterification of vegetable palm oil. International Journal of Engineering, Transactions B: Applications 31 (8):1326–33. doi:10.5829/ije.2018.31.08b.22.
  • Mohammed, A. K., Z. A. Alkhafaje, and I. M. Rashid. 2023. Heterogeneously catalyzed transesterification reaction using waste snail shell for biodiesel production. Heliyon 9 (6):e17094. Elsevier Ltd. doi:10.1016/j.heliyon.2023.e17094.
  • Nahas, L., E. Dahdah, S. Aouad, B. El Khoury, C. Gennequin, E. Abi Aad, and J. Estephane. 2023. Highly Efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies. Renewable Energy 202 (December 2022):1086–95. Elsevier Ltd. doi:10.1016/j.renene.2022.12.020.
  • Narula, V., M. Fazil Khan, A. Negi, S. Kalra, A. Thakur, and S. Jain. 2017. Low temperature Optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology. Energy 140:879–84. Elsevier Ltd. doi:10.1016/j.energy.2017.09.028.
  • Rabie, A. M., M. Shaban, M. R. Abukhadra, R. Hosny, S. A. Ahmed, and N. A. Negm. 2019. Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. Journal of Molecular Liquids 279:224–31. Elsevier B.V. doi:10.1016/j.molliq.2019.01.096.
  • Rezania, S., B. Oryani, J. Park, B. Hashemi, K. Kumar Yadav, E. E. Kwon, J. Hur, and J. Cho. 2019. Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Conversion and Management 201 (July):112155. Elsevier. doi:10.1016/j.enconman.2019.112155.
  • Scherrer, P. 1912. Determination of the internal structure and size of colloid particles by X-Rays. Colloid chemistry a textbook, 387–409. Berlin, Heidelberg: Springer.
  • Sisca, V., A. Deska, Z. Syukri, and N. Jamarun. 2021. Synthesis and characterization of CaO limestone from lintau buo supported by TiO2 as a heterogeneous catalyst in the production of biodiesel. Indonesian Journal of Chemistry 21 (4):979–89. doi:10.22146/ijc.64675.
  • Tshizanga, N., E. Funmilayo Aransiola, and O. Oyekola. 2017. Optimisation of biodiesel production from waste vegetable oil and Eggshell Ash. South African Journal of Chemical Engineering 23:145–56. Elsevier Ltd. doi:10.1016/j.sajce.2017.05.003.
  • Xia, S., H. Yongjie, C. Chen, J. Tao, B. Yan, L. Wanqing, G. Zhu, Z. Cheng, and G. Chen. 2022. Electrolytic transesterification of waste cooking oil using magnetic Co/Fe–ca based catalyst derived from waste shells: A promising approach towards Sustainable biodiesel production. Renewable Energy 200 (409):1286–99. Elsevier Ltd. doi:10.1016/j.renene.2022.10.071.
  • Yuliana, M., S. Permatasari Santoso, F. Edi Soetaredjo, S. Ismadji, A. Ayucitra, C. Gunarto, A. Elisa Angkawijaya, J. Yi Hsu, and C. Thanh Truong. 2021. Efficient conversion of leather tanning waste to biodiesel using crab shell-based catalyst: WASTE-TO-ENERGY approach. Biomass and Bioenergy 151 (May):106155. Elsevier Ltd. doi:10.1016/j.biombioe.2021.106155.
  • Yusoff, M. N. A. M., N. W. M. Zulkifli, N. L. Sukiman, M. A. Kalam, H. H. Masjuki, A. Z. Syahir, M. S. N. Awang, M. A. Mujtaba, J. Milano, and A. H. Shamsuddin. 2022. Microwave irradiation-assisted transesterification of ternary oil mixture of waste cooking oil – jatropha curcas – palm oil: Optimization and characterization. Alexandria Engineering Journal 61 (12):9569–82. Faculty of Engineering, Alexandria University. doi:10.1016/j.aej.2022.03.040.
  • Zhang, W., C. Wang, B. Luo, H. Peihang, L. Zhang, and W. Guoqiang. 2022. Efficient and economic transesterification of waste cooking soybean oil to biodiesel catalyzed by outer surface of ZSM-22 supported different Mo catalyst. Biomass and Bioenergy 167 (October):106646. Elsevier Ltd. doi:10.1016/j.biombioe.2022.106646.
  • Zhao, X., X. Guizhuan, Y. Yongchang, X. Yan, and B. Zhang. 2013. Optimization of transesterification of beef tallow for biodiesel production catalyzed by solid catalysts. Transactions of the Chinese Society of Agricultural Engineering 29 (17):196–203. Editorial Office of Transactions of the Chinese Society of Agricultural .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.