94
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sustainable biomass conversion into activated carbon for supercapacitor devices: a promising approach toward renewable energy storage

ORCID Icon &
Pages 1165-1176 | Received 31 May 2023, Accepted 06 Dec 2023, Published online: 26 Dec 2023

References

  • Abioye, A. M., and F. N. Ani. 2015. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews 52:1282–1293.
  • Aria, A. I., and M. Gharib. 2012. Effect of dry oxidation on the performance of carbon nanotube arrays electrochemical capacitors. MRS Online Proceedings Library (OPL) 1407:mrsf11–1407. doi:10.1557/opl.2012.543.
  • Awitdrus, A., M. Deraman, I. A. Talib, R. Farma, R. Omar, M. M. Ishak, and N. S. M. Nor. 2015, April. Physical and electrochemical properties of supercapacitor composite electrodes prepared from biomass carbon and carbon from green petroleum coke. AIP Conference Proceedings 1656(1):030007. AIP Publishing LLC.
  • Bondavalli, P., G. Pognon, E. Koumoulos, and C. Charitidis. 2018. Dynamic air-brush deposition method for the New generation of graphene based supercapacitors. MRS Advances 3 (1–2):79–84. doi:10.1557/adv.2018.65.
  • Bo, X., K. Xiang, Y. Zhang, Y. Shen, S. Chen, Y. Wang, M. Xie, and X. Guo. 2019. Microwave-assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high-performance supercapacitor. Journal of Energy Chemistry 39:1–7. doi:10.1016/j.jechem.2019.01.006.
  • Chaitra, K., P. Sivaraman, R. T. Vinny, U. M. Bhatta, N. Nagaraju, and N. Kathyayini. 2016. High energy density performance of hydrothermally produced hydrous ruthenium oxide/multiwalled carbon nanotubes composite: Design of an asymmetric supercapacitor with excellent cycle life. Journal of Energy Chemistry 25 (4):627–35. doi:10.1016/j.jechem.2016.04.012.
  • Chen, C. 2019. Activated carbon from sludge by one-step ZnCl2 activation for high-performance supercapacitors. Electrochimica Acta 293:256–264.
  • Cheng, Y., B. Li, Y. Huang, Y. Wang, J. Chen, D. Wei, and Y. Zhou. 2018. Molten salt synthesis of nitrogen and oxygen enriched hierarchically porous carbons derived from biomass via rapid microwave carbonization for high voltage supercapacitors. Applied Surface Science 439:712–723. doi:10.1016/j.apsusc.2018.01.006.
  • Chung, H.-Y., G.-T. Pan, Z.-Y. Hong, C.-T. Hsu, S. Chong, T. C.-K. Yang, and C.-M. Huang. 2020. Biomass-derived porous carbons derived from soybean residues for high-performance solid-state supercapacitors. Molecules 25 (18):4050. doi:10.3390/molecules25184050.
  • Farm, Y. Y. (2020). Biomass derived activated carbon as electrode materials for electrochemical double layer capacitors (EDLC). Doctoral dissertation, University of Sheffield.
  • Feng, Z., K. Odelius, G. K. Rajarao, and M. Hakkarainen. 2018. Microwave carbonized cellulose for trace pharmaceutical adsorption. Chemistry Engineering Journal 346:557–66. doi:10.1016/j.cej.2018.04.014.
  • Franca, A. S., L. S. Oliveira, A. A. Nunes, and C. C. Alves. 2010. Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents. Bioresource Technology 101 (3):1068–1074. doi:10.1016/j.biortech.2009.08.102.
  • Gao, Y., X. Yan, H. Zhang, X. Ding, and M. Liu. 2019. Activated carbon derived from walnut shell as electrode material for supercapacitors with enhanced electrochemical performance. Journal of Alloys and Compounds 778:185–192.
  • Giannazzo, F., R. Dagher, E. Schilirò, S. E. Panasci, G. Greco, G. Nicotra, and A. Michon. 2020. Nanoscale structural and electrical properties of graphene grown on AlGaN by catalyst-free chemical vapor deposition. Nanotechnology 32 (1):015705. doi:10.1088/1361-6528/abb72b.
  • Guerriero, G., J. Hausman, J. Strauss, H. Ertan, and K. S. Siddiqui. 2016. Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Engineering in Life Sciences 16 (1):1–16. doi:10.1002/elsc.201400196.
  • Gupta, G. K., P. Sagar, S. K. Pandey, M. Srivastava, A. K. Singh, J. Singh, A. Srivastava, S. K. Srivastava, and A. Srivastava. 2021. In situ fabrication of activated carbon from a bio-waste Desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Research Letters 16 (1):1–12. doi:10.1186/s11671-021-03545-8.
  • Hesas, R. H., W. M. A. W. Daud, J. N. Sahu, and A. Arami-Niya. 2013. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. Journal of Analytical and Applied Pyrolysis 100:1–11. doi:10.1016/j.jaap.2012.12.019.
  • Hu, C. 2008. Fluid coke derived activated carbon as electrode material for electrochemical double layer capacitor.
  • Huang, L., Y. Sun, W. Wang, Q. Yue, and T. Yang. 2011. Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC). Chemistry Engineering Journal 171 (3):1446–53. doi:10.1016/j.cej.2011.05.041.
  • Inal, I. I. G., S. M. Holmes, E. Yagmur, N. Ermumcu, A. Banford, and Z. Aktas. 2018. The supercapacitor performance of hierarchical porous activated carbon electrodes synthesised from demineralised (waste) cumin plant by microwave pretreatment. Journal of Industrial and Engineering Chemistry 61:124–32. doi:10.1016/j.jiec.2017.12.009.
  • Karaman, C., O. Karaman, N. Atar, and M. L. Yola. 2021. Sustainable electrode material for high-energy supercapacitor: Biomass-derived graphene-like porous carbon with three-dimensional hierarchically ordered ion highways. Physical Chemistry Chemical Physics 23 (22):12807–12821. doi:10.1039/D1CP01726H.
  • Katagiri, N., N. Adachi, and T. Ota. 2014. Preparation and evaluation of ferrite-silica aerogel nanocomposite. Journal of the Ceramic Society of Japan 122 (1421):29–34. doi:10.2109/jcersj2.122.29.
  • Li, H. 2018. High-performance porous carbons from biomass wastes for supercapacitors. Journal of Power Sources 378:542–550.
  • Liang, J., T. Qu, X. Kun, Y. Zhang, S. Chen, Y. C. Cao, and M. Xie, X. Guo. 2018. Microwave assisted synthesis of Camellia oleifera shell-derived porous carbon with rich oxygen functionalities and superior supercapacitor performance. Applied Surface Science 436:934–40. doi:10.1016/j.apsusc.2017.12.142.
  • Mary, A. J. C., C. Nandhini, and A. C. Bose. 2019. Hierarchical porous structured N-doped activated carbon derived from Helianthus annuus seed as a cathode material for hybrid supercapacitor device. Materials Letters 256:126617. doi:10.1016/j.matlet.2019.126617.
  • Nagarajan, S., K. Subramani, K. Manickavasakam, N. Iiayaraja, and M. Sathish. 2016. Biomass-derived activated porous carbon from rice straw for high energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy & Fuels 31 (1):977–985. doi:10.1021/acs.energyfuels.6b01829.
  • Nunes, L. J. R., R. Godina, and J. C. D. O. Matias. 2019. Technological innovation in biomass energy for the sustainable growth of textile industry. Sustainability 11 (2):528. doi:10.3390/su11020528.
  • Oliveira, G. F. D. 2016. Produção de carvão ativado a partir do pecíolo do babaçu.
  • Panicker, N. J., and P. P. Sahu. 2021. Green reduction of graphene oxide using phytochemicals extracted from pomelo grandis and Tamarindus indica and its supercapacitor applications. Journal of Materials Science: Materials in Electronics 32 (11):15265–78. doi:10.1007/s10854-021-06077-0.
  • Rajasekaran, S. J., and V. Raghavan. 2020. Facile synthesis of activated carbon derived from Eucalyptus globulus seed as efficient electrode material for supercapacitors. Diamond and Related Materials 109:108038. doi:10.1016/j.diamond.2020.108038.
  • Sathish-Kumar, K., G. Vazquez-Huerta, A. Rodriguez-Castellanos, H. M. Poggi-Varaldo, and O. Solorza-Feria. 2012. Microwave assisted synthesis and characterizations of decorated activated carbon. International Journal of Electrochemical Science 7 (6):5484–5494. doi:10.1016/S1452-3981(23)19636-2.
  • Shan, D., J. Yang, W. Liu, J. Yan, and Z. Fan. 2016. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. Journal of Materials Chemistry A 4 (35):13589–602. doi:10.1039/C6TA05406D.
  • Tripathi, A. K., S. Murugavel, and R. K. Singh. 2021. Dead ashoka (Saraca asoca) leaves–derived porous activated carbons and flexible iongel polymer electrolyte for high-energy-density electric double-layer capacitors. Materials Today Sustainability 11-12:100062. doi:10.1016/j.mtsust.2021.100062.
  • Wang, Z., J. Zhang, J. Li, X. Li, and Z. Zhang. 2018. Activated carbon derived from pomelo peel as anode material for high-performance lithium-ion batteries. Journal of Materials Science: Materials in Electronics 29 (17):14510–14518.
  • Xu, M., Q. Huang, R. Sun, and X. Wang. 2016. Simultaneously obtaining fluorescent carbon dots and porous active carbon for supercapacitors from biomass. RSC Advances 6 (91):88674–88682. doi:10.1039/C6RA18725K.
  • Yang, Z., H. Lei, K. Qian, Y. Zhang, and E. Villota. 2018. Renewable bio-phenols from in situ and ex situ catalytic pyrolysis of Douglas fir pellet over biobased activated carbons. Sustainable Energy and Fuels 2 (4):894–904. doi:10.1039/C7SE00607A.
  • Yang, G., and S.-J. Park. 2018. MnO2 and biomass-derived 3D porous carbon composites electrodes for high performance supercapacitor applications. Journal of Alloys and Compounds 741:360–67. doi:10.1016/j.jallcom.2018.01.108.
  • Zhang, X., Y. Wang, and X. Li. 2014. UV-vis spectroscopic characterization of activated carbons. Journal of Materials Science and Engineering 4 (2):1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.