54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cellularization and intrinsic instability characteristics of 2-methylfuran spherical expanding flame

, ORCID Icon, , , &
Pages 964-985 | Received 25 Sep 2023, Accepted 06 Dec 2023, Published online: 19 Dec 2023

References

  • Addabbo, R., The structure and stability of spanding and converging Near-Stoichiometric flames, (2001). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Some+Contributions+on+MIMO+Radar#0.
  • Addabbo, R., J. K. Bechtold, and M. Matalon. 2002. Wrinkling of spherically expanding flames, proc. Proceedings of the Combustion Institute 29 (2):1527–35. doi:10.1016/s1540-7489(02)80187-0.
  • Andra Luciana, T., C. Gasparotti, and E. Rusu. 2021. Green fuels — a new challenge for marine industry. Energy Reports 7:127–32. doi:10.1016/j.egyr.2021.06.020.
  • Aniruddha, R., A. Rajendran, and S. Sindhu. 2022. A study on biofuel generation from microalgae species, Mater. Materials Today: Proceedings 57:1660–65. doi:10.1016/j.matpr.2021.12.269.
  • Askari, O., M. Elia, M. Ferrari, and H. Metghalchi. 2017. Cell formation effects on the burning speeds and flame front area of synthetic gas at high pressures and temperatures, Appl. Applied Energy 189:568–77. doi:10.1016/j.apenergy.2016.12.090.
  • Bao, Y., X. Li, C. Xu, Q. Wang, and F. Oppong. 2022. Experimental and theoretical study of 2-ethylfuran spherical expanding flame: Cellularization, intrinsic instability and self-acceleration, fuel process. Fuel Processing Technology 238:107521. doi:10.1016/j.fuproc.2022.107521.
  • Becerra-Ruiz, J. D., R. G. Gonzalez-Huerta, J. Gracida, A. Amaro-Reyes, and G. Macias-Bobadilla. 2019. Using green-hydrogen and bioethanol fuels in internal combustion engines to reduce emissions. International Journal of Hydrogen Energy 44 (24):12324–32. doi:10.1016/j.ijhydene.2019.02.211.
  • Bechtold, J. K., and M. Matalon. 2001. The dependence of the Markstein length on stoichiometry, combust. Flame 127 (1–2):1906–13. doi:10.1016/S0010-2180(01)00297-8.
  • Beeckmann, J., R. Hesse, S. Kruse, A. Berens, N. Peters, H. Pitsch, and M. Matalon. 2017. Propagation speed and stability of spherically expanding hydrogen/air flames: Experimental study and asymptotics, proc. Proceedings of the Combustion Institute 36 (1):1531–38. doi:10.1016/j.proci.2016.06.194.
  • Bradley, D., K. N. C. Bray, and N. Nikiforakis. 2000. Instabilities and flame speeds in large-scale premixed gaseous explosions, Philos. Philosophical Transactions of the Royal Society of London Series A Mathematical Physical and Engineering Sciences 358 (1764):3567–81. doi:10.1098/rsta.1999.0510.
  • Bradley, D., R. A. Hicks, M. Lawes, C. G. W. Sheppard, and R. Woolley. 1998. The measurement of laminar burning velocities and Markstein numbers for Iso-octane–Air and Iso-octane–n-Heptane–Air mixtures at elevated temperatures and pressures in an explosion bomb. Combustion & Flame 115 (1–2):126–44. doi:10.1016/S0010-2180(97)00349-0.
  • Bradley, D., M. Lawes, R. Mumby, and P. Ahmed. 2019. The stability of laminar explosion flames, proc. Proceedings of the Combustion Institute 37 (2):1807–13. doi:10.1016/j.proci.2018.07.067.
  • Burke, M. P., Z. Chen, Y. Ju, and F. L. Dryer. 2009. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combustion & Flame 156 (4):771–79. doi:10.1016/j.combustflame.2009.01.013.
  • Cai, X., L. Su, J. Wang, E. Hu, and Z. Huang. 2023. Cellularity and self-similarity of hydrogen expanding spherical flames at high pressures. Physics of Fluids 35. doi:10.1063/5.0151566.
  • Cai, X., J. Wang, Z. Bian, H. Zhao, H. Dai, and Z. Huang. 2020. On transition to self-similar acceleration of spherically expanding flames with cellular instabilities. Combustion & Flame 215:364–75. doi:10.1016/j.combustflame.2020.02.001.
  • Cai, X., J. Wang, H. Zhao, M. Zhang, and Z. Huang. 2018. Flame morphology and self-acceleration of syngas spherically expanding flames. International Journal of Hydrogen Energy 43 (36):17531–41. doi:10.1016/j.ijhydene.2018.07.140.
  • Faghih, M., and Z. Chen. 2016. The constant-volume propagating spherical flame method for laminar flame speed measurement. Science Bulletin 61 (16):1296–310. doi:10.1007/s11434-016-1143-6.
  • Ganesan, R., S. Manigandan, M. S. Samuel, R. Shanmuganathan, K. Brindhadevi, N. T. Lan Chi, P. A. Duc, and A. Pugazhendhi. 2020. A review on prospective production of biofuel from microalgae. Biotechnology Reports 27:e00509. doi:10.1016/j.btre.2020.e00509.
  • Han, X., Z. Yang, M. Wang, J. Tjong, and M. Zheng. 2017. Clean combustion of n -butanol as a next generation biofuel for diesel engines. Applied Energy 198:347–59. doi:10.1016/j.apenergy.2016.12.059.
  • Haq, M. Z. 1998. Fundamental studies of premixed combustion, univ. Leeds. http://etheses.whiterose.ac.uk/id/eprint/1545.
  • Huang, S., R. Huang, Y. Zhang, P. Zhou, Z. Wang, and Z. Yin. 2019. Relationship between cellular morphology and self-acceleration in lean hydrogen-air expanding flames. International Journal of Hydrogen Energy 44 (59):31531–43. doi:10.1016/j.ijhydene.2019.09.229.
  • Huang, S., Y. Zhang, R. Huang, S. Xu, Y. Ma, Z. Wang, and X. Zhang. 2019. Quantitative characterization of crack and cell’s morphological evolution in premixed expanding spherical flames. Energy 171:161–69. doi:10.1016/j.energy.2018.12.202.
  • Jiang, Y. H., G. X. Li, F. S. Li, Z. Y. Sun, and H. M. Li. 2017. Experimental investigation of correlation between cellular structure of the flame front and pressure. Fuel 199:65–75. doi:10.1016/j.fuel.2017.02.036.
  • Jiang, Y. H., G. X. Li, H. M. Li, L. Li, and L. L. Tian. 2018. Study on the influence of flame inherent instabilities on crack propagation of expanding premixed flame. Fuel 233:504–12. doi:10.1016/j.fuel.2018.06.088.
  • Jiang, Y. H., G. X. Li, H. M. Li, L. Li, and G. P. Zhang. 2018. Effect of flame inherent instabilities on the flame geometric structure characteristics based on wavelet transform. International Journal of Hydrogen Energy 43 (18):9022–35. doi:10.1016/j.ijhydene.2018.03.141.
  • Kelley, A. P., and C. K. Law. 2009. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combustion & Flame 156 (9):1844–51. doi:10.1016/j.combustflame.2009.04.004.
  • Li, X., J. Sun, C. Xu, Y. Li, R. Zhang, L. Qian, and Y. Chen. 2019. Visualization of bubble flow in the channel of a dimple-type embossing plate heat exchanger under different fluid inlet/outlet ports. International Journal of Heat and Mass Transfer 145:118750. doi:10.1016/j.ijheatmasstransfer.2019.118750.
  • Li, X., Q. Wang, F. Oppong, W. Liu, and C. Xu. 2021. Cellularization characteristics of ethyl acetate spherical expanding flame. Fuel 291. doi:10.1016/j.fuel.2021.120213.
  • Li, Y. H., J. W. Liang, and H. J. Lin. 2022. Development of laminar burning velocity measurement system in premixed flames with hydrogen-content syngas or strong oxidizer conditions in a slot burner, case stud. Case Studies in Thermal Engineering 35:102162. doi:10.1016/j.csite.2022.102162.
  • Ma, Y., S. Huang, R. Huang, Y. Zhang, and S. Xu. 2017. Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber, Appl. Applied Energy 185:519–30. doi:10.1016/j.apenergy.2016.11.002.
  • Mahapatra, S., D. Kumar, B. Singh, and P. K. Sachan. 2021. Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus 4:100036. doi:10.1016/j.nexus.2021.100036.
  • Mizobuchi, Y. 2022. Large deformation effects on the combustion structure of a hydrogen/air rich premixed flame, combust 239. Flame. doi:10.1016/j.combustflame.2021.111732.
  • Oppong, F., Z. Luo, X. Li, Y. Song, and C. Xu. 2022. Intrinsic instability of different fuels spherically expanding flames: A review, fuel process. Fuel Processing Technology 234:107325. doi:10.1016/j.fuproc.2022.107325.
  • Oppong, F., C. Xu, L. Zhongyang, X. Li, W. Zhou, and C. Wang. 2019. Cellularization of 2-methylfuran expanding spherical flame, combust. Combustion and Flame 206:379–89. doi:10.1016/j.combustflame.2019.05.023.
  • Oppong, F., L. Zhongyang, X. Li, and C. Xu. 2021. Inherent instabilities in ethyl acetate premixed flames. Fuel 290. doi:10.1016/j.fuel.2020.120000.
  • Sun, C., Y. Li, Z. Liu, X. He, and F. Liu. 2021. Experimental investigation on the effect of equivalence ratio on the development of cellular structure of E30-air mixture, exp. Experimental Thermal & Fluid Science 123:110330. doi:10.1016/j.expthermflusci.2020.110330.
  • Wu, F., G. Jomaas, and C. K. Law. 2013. An experimental investigation on self-acceleration of cellular spherical flames, proc. Proceedings of the Combustion Institute 34 (1):937–45. doi:10.1016/j.proci.2012.05.068.
  • Xu, C., Y. Hu, X. Li, X. Zhou, and A. Zhong. 2017. Comparative experimental study of ethanol-air premixed laminar combustion characteristics by laser induced spark and electric spark ignition. The Korean Journal of Chemical Engineering 34 (2):574–79. doi:10.1007/s11814-016-0338-5.
  • Xu, C., Q. Wang, X. Li, F. Oppong, and W. Liu. 2022. The effect of intrinsic instability on the surface topography of spherical 2-acetylfuran flame. Fuel 318:123624. doi:10.1016/j.fuel.2022.123624.
  • Xu, C., A. Zhong, H. Wang, C. Jiang, A. Sahu, W. Zhou, and C. Wang. 2018. Laminar burning velocity of 2-methylfuran-air mixtures at elevated pressures and temperatures: Experimental and modeling studies. Fuel 231:215–23. doi:10.1016/j.fuel.2018.05.082.
  • Xu, C. S., Q. W. Wang, X. L. Li, F. Oppong, and W. N. Liu. 2022. Comparison of 2-acetylfuran, 2-ethylfuran, and 2-methylfuran spherically expanding flame intrinsic instabilities. Science China Technological Sciences 65 (10):2388–98. doi:10.1007/s11431-022-2152-y.
  • Yang, Q., Z. Liu, X. Hou, X. He, M. Sjöberg, D. Vuilleumier, C. Liu, and F. Liu. 2020. Measurements of laminar flame speeds and flame instability analysis of E30-air premixed flames at elevated temperatures and pressures. Fuel 259. doi:10.1016/j.fuel.2019.116223.
  • Yang, S., A. Saha, F. Wu, and C. K. Law. 2016. Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities. Combustion & Flame 171:112–18. doi:10.1016/j.combustflame.2016.05.017.
  • Zhao, H., J. Wang, Z. Bian, X. Cai, X. Li, and Z. Huang. 2019. Onset of cellular instability and self-acceleration propagation of syngas spherically expanding flames at elevated pressures. International Journal of Hydrogen Energy 44 (51):27995–8006. doi:10.1016/j.ijhydene.2019.09.038.
  • Zuo, Z., B. Hu, X. Bao, S. Zhang, L. Kong, L. Deng, Y. Xu, Z. Zhu, and S. Pan. 2022. Quantitative research on cellular instabilities of premixed C1–C3 alkane–air mixtures using spherically expanding flames, fuel process. Fuel Processing Technology 226:107075. doi:10.1016/j.fuproc.2021.107075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.