87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of overlapping and space between stages of a three-bladed double-stage Savonius hydrokinetic turbine for low flow speed perennial river application

, , &
Pages 1177-1195 | Received 15 Aug 2023, Accepted 12 Dec 2023, Published online: 26 Dec 2023

References

  • Abbasi, K. R., J. Abbas, and M. Tufail. 2021. Revisiting electricity consumption, price, and real GDP: A modified sectoral level analysis from Pakistan. Energy Policy 149:112087. doi:10.1016/j.enpol.2020.112087.
  • Alexander AJ, K., and B. P. Holownia. 1978. Wind tunnel tests on a Savonius turbine. Journal of Industrial Aerodynamics 3 (4):343–51. doi:10.1016/0167-6105(78)90037-5.
  • Alex, P., and J. J. Garcia-Rendon. 2021. Integration of non-conventional renewable energy and the spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy 167:146–161.
  • Alizadeh, H., M. Hossein Jahangir, and G. Roghayeh. 2020. CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows. Ocean Engineering 202:107178.
  • Bartl, J., F. Pierella, and L. Saetran. 2012. Wake measurements behind an array of two model wind turbines. Energy Procedia 24:305–12. doi:10.1016/j.egypro.2012.06.113.
  • Basumatary, M., A. Biswas, and R. D. Misra. 2021. Experimental verification of improved performance of Savonius turbine with a combined lift and drag-based blade profile for ultra-low head river application. Sustainable Energy Technologies and Assessments 44:100999. doi:10.1016/j.seta.2021.100999.
  • Chemengich, S. J., S. Z. Kassab, and E. R. Lotfy. 2022. Effect of the variations of the gap flow guides geometry on the Savonius wind turbine performance: 2D and 3D studies. Journal of Wind Engineering and Industrial Aerodynamics 222:104920. doi:10.1016/j.jweia.2022.104920.
  • Frikha, S., Z. Driss, E. Ayadi, Z. Masmoudi, and M. S. Abid. 2016. Numerical and experimental characterization of multi-stage Savonius rotors. Energy 114:382–404. doi:10.1016/j.energy.2016.08.017.
  • Fujisawa, N. 1992. On the torque mechanism of Savonius rotors. Journal of Wind Engineering and Industrial Aerodynamics 40 (3):277–92. doi:10.1016/0167-6105(92)90380-S.
  • Ghosh, A., A. Biswas, K. K. Sharma, and R. Gupta. 2015. Computational analysis of flow physics of a combined three-bladed darrieus Savonius wind rotor. Journal of the Energy Institute 88 (4):425–437. doi:10.1016/j.joei.2014.11.001.
  • Gupta, R., and A. Biswas. 2011. CFD analysis of flow physics and aerodynamic performance of a combined three-bucket Savonius and three-bladed darrieus turbine. International Journal of Green Energy 8 (2):209–33. doi:10.1080/15435075.2010.548541.
  • Ibrahim, M. M., N. H. Mostafa, A. H. Osman, and A. Hesham. 2020. Performance analysis of a stand-alone hybrid energy system for desalination unit in Egypt. Energy Conversion and Management 215:112941.
  • Khan, Z. U., Z. Ali, and E. Uddin. 2022. Performance enhancement of vertical axis hydrokinetic turbine using novel blade profile. Renewable Energy 188:801–18. doi:10.1016/j.renene.2022.02.050.
  • Khan, M., N. Islam, T. Iqbal, M. Hinchey, and V. Masek. 2009. Performance of Savonius rotor as a water current turbine. The Journal of Ocean Technology 4 (2):71–83.
  • Kirke, B. K. 2011. Tests on ducted and bare helical and straight blade darrieus hydrokinetic turbines. Renewable Energy 36 (11):3013–22. doi:10.1016/j.renene.2011.03.036.
  • Korprasertsak, N., and T. Leephakpreeda. 2016. Analysis and optimal design of wind boosters for vertical axis wind turbines at low wind speed. Journal of Wind Engineering and Industrial Aerodynamics 159:9–18. doi:10.1016/j.jweia.2016.10.007.
  • Kothe, L. B., S. V. Möller, and A. P. Petry. 2020. Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine. Renewable Energy 148:627–38. doi:10.1016/j.renene.2019.10.151.
  • Kumar, A., and R. P. Saini. 2017. Performance analysis of a Savonius hydrokinetic turbine having twisted blades. Renewable Energy 108:502–22. doi:10.1016/j.renene.2017.03.006.
  • Laín, S., L. T. Contreras, López, O. 2019. A review on computational fluid dynamics modeling and simulation of horizontal axis hydrokinetic turbines. Journal of the Brazilian Society of Mechanical Sciences and Engineering 6.
  • Modi, V. J., N. J. Roth, and F. MSUK. 1984. Optimum-configuration studies and prototype design of a wind-energy-operated irrigation system. Journal of Wind Engineering and Industrial Aerodynamics 16 (1):85–96. doi:10.1016/0167-6105(84)90050-3.
  • Mohammadi, M., Mohammadi, R., Ramadan, A., and Mohamed, M. H. 2018. Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization. Energy 158:592–606.
  • Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., and Tucciarelli, T. 2020. Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine. Renewable Energy 162:1087–1103.
  • Mosbahi, M., S. Elgasri, M. Lajnef, B. Mosbahi, and Z. Driss. 2021. Performance enhancement of a twisted Savonius hydrokinetic turbine with an upstream deflector. International Journal of Green Energy 18 (1):51–65. doi:10.1080/15435075.2020.1825444.
  • Munson, B. R., D. F. Young, T. H. Okiishi, and W. W. Huebsch. 2011. Fundamentals of fluid. mechanics. 6th ed. Wiley India Edition Delhi, India: Wiley India Edition.
  • Nimvari, M. E., H. Fatahian, and E. Fatahian. 2020. Performance improvement of a Savonius vertical axis wind turbine using a porous deflector. Energy Conversion and Management 220:113062. doi:10.1016/j.enconman.2020.113062.
  • Noel, H., J. C. Stephens, and S. A. Malin. 2019. Embodied energy injustices: Unveiling and politicizing the transboundary harms of fossil fuel extractive and fossil fuel supply chains. Energy Research & Social Science 48:219–234.
  • Quaranta, E., and P. Davies. 2022. Emerging and innovative materials for hydropower Engineering applications: Turbines, bearings, sealing, dams and waterways, and Ocean power. Engineering 8:148–158.
  • Ridgill, M., Neill, S. P., Lewis, M. J., Robins, P. E., and Patil, S. D. 2021. Global riverine theoretical hydrokinetic resource assessment. Renewable Energy 174:654–665.
  • Saha, U. K., and M. J. Rajkumar. 2006. On the performance analysis of Savonius turbine with twisted blades. Renewable Energy 31 (11):1776–88. doi:10.1016/j.renene.2005.08.030.
  • Sahebzadeh, S., A. Rezaeiha, and H. Montazeri. 2020. Towards optimal layout design of vertical-axis wind-turbine farms: Double rotor arrangements. Energy Conversion and Management 226:113527.
  • Salleh, M. B., N. M. Kamaruddin, and Z. Mohamed-Kassim. 2020. The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine. Energy Conversion and Management 226:113584.
  • Salleh, M. B., Kamaruddin, N. M., Mohamed-Kassim, Z., and Bakar, E. A. 2021. Experimental investigation on the characterization of self-starting capability of a 3-bladed Savonius hydrokinetic turbine using deflector plates. Ocean Engineering 228:108950.
  • Sari, M., Badruzzaman, M., Cherchi, C., Swindle, M., Ajami, N., and Jacangelo, J. G. 2018. Recent innovations and trends in in-conduit hydropower technologies and their applications in water distribution systems. Journal of Environmental Management 228:416–428.
  • Sarma, K. C., A. Biswas, and R. D. Misra. 2022. Experimental investigation of a two-bladed double-stage Savonius-akin hydrokinetic turbine at low flow velocity conditions. Renewable Energy 187:958–973. doi:10.1016/j.renene.2022.02.011.
  • Sarma, N. K., A. Biswas, and R. D. Misra. 2014. Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power. Publisher: Elsevier, Journal of Energy Conversion & Management 83:88–98. doi: 10.1016/j.enconman.2014.03.070.
  • Shahsavari, A., and M. Akbari. 2018. Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews 90:275–291.
  • Shamsuddin, M. S. M., and N. M. Kamaruddin. 2023. Experimental study on the characterization of the self-starting capability of a single and double-stage Savonius turbine. Results in Engineering 17:100854. doi:10.1016/j.rineng.2022.100854.
  • Shashikumar, C. M., H. Vijaykumar, and M. Vasudeva. 2021. Numerical investigation of conventional and tapered Savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation channel. Sustainable Energy Technologies and Assessments 43:100871.
  • Sinsel, S. R., R. L. Riemke, and V. H. Hoffmann. 2020. Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy 145:2271–2285.
  • Solangi, Y. A., Q. Tan, N. Hussain Mirjat, G. Das Valasai, M. Waris Ali Khan, and M. Ikram. 2019. An integrated delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan. Processes 7 (2):118.
  • Tahani, M., A. Rabbani, A. Kasaeian, M. Mehrpooya, and M. Mirhosseini. 2017. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability. Energy 130:327–38. doi:10.1016/j.energy.2017.04.125.
  • Talukdar, P. K., A. Sardar, V. Kulkarni, and U. K. Saha. 2018. Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Conversion and Management 158:36–49. doi:10.1016/j.enconman.2017.12.011.
  • Thiyagaraj, J., I. Rahamathullah, G. Anbuchezhiyan, R. Barathiraja and A. Ponshanmuga Kumar, 2021. Influence of blade numbers, overlapping ratio and modified blades on performance characteristics of the Savonius hydro-kinetic turbine. Materials Today: Proceedings, Sri Sairam Institute of Technology in Chennai, Tamil Nadu. 46, 4047–4053.
  • Turbulence intensity. Accessed 1 February, 2013. http://www.cfd-online.com/Wiki/Turbulenceintensity
  • Wang, Q., M. Su, R. Li, and P. Ponce. 2019. The effects of energy prices, urbanization, and economic growth on energy consumption per capita in 186 countries. Journal of Cleaner Production 225:1017–1032. doi:10.1016/j.jclepro.2019.04.008.
  • Wua, H., L. Chen, M. Yu, W. Li, and B. Chen. 2012. On design and performance prediction of the horizontal-axis hydrokinetic turbine. Ocean Engineering 50:23–30. doi:10.1016/j.oceaneng.2012.04.003.
  • Yosry, A. G., A. Fernández-Jiménez, E. Álvarez-Álvarez, and E. Blanco Marigorta. 2021. Design and characterization of a vertical-axis micro tidal turbine for low-velocity scenarios. Energy Conversion and Management 237:114144. doi:10.1016/j.enconman.2021.114144.
  • Zhang, Y., C. Kang, H. Zhao, and H. B. Kim. 2021. Effects of the deflector plate on performance and flow characteristics of a drag-type hydrokinetic rotor. Ocean Engineering 238:109760. doi:10.1016/j.oceaneng.2021.109760.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.