89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gas pressure, in-situ stress and coal strength effects on the evolution process of coal and gas outbursts based on the experimental data

ORCID Icon, , ORCID Icon, , , , , ORCID Icon & show all
Pages 1214-1231 | Received 10 Jul 2023, Accepted 11 Dec 2023, Published online: 04 Jan 2024

References

  • Alekseev, A., N. V. Nedodayev, and G. P. Starikov. 1980. Destruction of coal saturated with gas under triaxial stress field on destressing: Modeling of outbursts of coal and gas. Institute Problem Mekhaniki an USSR 139:30.
  • An, F., Y. Yuan, X. Chen, Z. Li, and L. Li. 2019. Expansion energy of coal of for the initiation of coal and gas outbursts. Fuel 235:551–57. doi:10.1016/j.fuel.2018.07.132
  • Cao, J., L. Dao, H. Sun, B. Wang, B. Zhao, X. Yang, X. Zhao, and P. Guo. 2019. Experimental study of the impact of gas adsorption on coal and gas outburst dynamic effects. Process Safety and Environmental Protection 128:158–66. doi:10.1016/j.psep.2019.05.020
  • Chen, K. P. 2011. A new mechanistic model for prediction of instantaneous coal outbursts - dedicated to the memory of Prof. Daniel D. Joseph. International Journal of Coal Geology 87 (2):72–79. doi:10.1016/j.coal.2011.04.012.
  • Cheng, Y., and Z. Pan. 2020. Reservoir properties of Chinese tectonic coal: A review. Fuel 260:116350. doi:10.1016/j.fuel.2019.116350
  • Cheng, Y., X. Zhang, and L. Wang. 2013. Controlling effect of ground stress on gas pressure and outburst disaster. Journal of Mining Safe Engineering 30 (3):408–14. in Chinese.
  • Ding, Y., and Z. Yue. 2018. An experimental investigation of the roles of water content and gas decompression rate for outburst in coal briquettes. Fuel 234:1221–1228. doi:10.1016/j.fuel.2018.07.143
  • Guan, P., H. Wang, and Y. Zhang. 2009. Mechanism of instantaneous coal outburst. Geology 37 (10):915–18. doi:10.1130/G25470A.1
  • Guo, H.J., Y.J. Yu, K. Wang, Z. Yang, L. Wang, and C. Xu. 2023. Kinetic characteristics of desorption and diffusion in raw coal and tectonic coal and their influence on coal and gas outburst. Fuel 343:127883. doi:10.1016/j.fuel.2023.127883
  • Hodot, B. B. 1966. Coal and gas outburst (Chinese translation). Beijing: China Industry Press.
  • Hu, Q. T. 2007. Research on the mechanical interaction mechanism and application of coal and gas outbursts. PhD. thesis, Beijing: China University of Mining and Technology.
  • Hu, Q., and G. Wen. 2013. The mechanical mechanism of coal and gas outburst. Beijing: Science Press.
  • Jasinge, D., P. G. Ranjith, X. Choi, and J. Fernando. 2012. Investigation of the influence of coal swelling on permeability characteristics using natural brown coal and reconstituted brown coal specimens. Energy 39 (1):303–309. doi:10.1016/j.energy.2012.01.010
  • Jin, K., Y. Cheng, T. Ten, W. Zhao, Q. Tu, J. Dong, Z. Wang, and B. Hu. 2018. Experimental investigation on the formation and transport mechanism of outburst coal-gas flow: Implications for the role of gas desorption in the development stage of outburst. International Journal of Coal Geology 194:45–58. doi:10.1016/j.coal.2018.05.012
  • Kubo, R. 1983. Thermodynamics. Beijing: People’s education press.
  • Lei, Y., Y. Cheng, T. Ren, Q. Tu, L. Shu, and Y. Li. 2021. The energy principle of coal and gas outbursts: Experimentally evaluating the role of gas desorption. Rock Mechanics and Rock Engineering 54 (1):11–30. doi:10.1007/s00603-020-02246-5
  • Lei, Y., Y. Cheng, L. Wang, T. Ten, and L. Shu. 2022. Identical acoustic waveforms found between different-sized outbursts: Implications for the propagation mechanism of coal and gas outbursts. Rock Mechanics and Rock Engineering 55 (11):6887–903. doi:10.1007/s00603-022-03026-z
  • Li, L., J. Tang, S. Sun, and J. Ding. 2019. Experimental study of the influence of water content on energy conversion of coal and gas outburst. Natural Hazards 97 (3):1083–1097. doi:10.1007/s11069-019-03687-0
  • Liu, H., B. Lin, J. Mou, and W. Yang. 2019. Mechanical evolution mechanism of coal and gas outburst. Rock Mechanics and Rock Engineering 52 (5):1591–1597. doi:10.1007/s00603-018-1546-6
  • Lu, C., L. Dou, H. Liu, H. Liu, B. Liu, and B. Du. 2012. Case study on microseismic effect of coal and gas outburst process. International Journal of Rock Mechanics & Mining Sciences 53:101–10. doi:10.1016/j.ijrmms.2012.05.009
  • Ma, Y., B. Nie, X. He, X. Li, J. Meng, and D. Song. 2020. Mechanism investigation on coal and gas outburst: An overview. International Journal of Minerals, Metallurgy & Materials 27 (7):872–87. doi:10.1007/s12613-019-1956-9
  • Meng, H., Y. Yang, H. Guo, W. Hou, X. Li, L. Chen, T. Rong, D. Yang, C. Wang, and P. Shen. 2023. Experimental study on the determinant factors and energy criterion of coal and gas outbursts. American Chemical Society Omega 8 (40):37248–37263. doi:10.1021/acsomega.3c05072
  • Paterson, L. 1986. A model for outbursts in coal. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 23 (4):327–332. doi:10.1016/0148-9062(86)90644-3
  • Shu, L., K. Wang, Z. Liu, W. Zhao, N. Zhu, and Y. Lei. 2022. A novel physical model of coal and gas outburst mechanism: Insights into the process and initiation criterion of outburst. Fuel 323:12405. doi:10.1016/j.fuel.2022,124305
  • Skoczylas, N., B. Dutka, and J. Sobczyk. 2014. Mechanical and gaseous properties of coal briquettes in terms of outburst risk. Fuel 134:45–52. doi:10.1016/j.fuel.2014.05.037
  • Sobczyk, J. 2011. The influence of sorption process on gas stresses leading to the coal and gas outburst in the laboratory conditions. Fuel 90 (3):1018–23. doi:10.1016/j.fuel.2010.11.004
  • Sobczyk, J. 2014. A comparison of the influence of adsorbed gases on gas tresses leading to coal and gas outburst. Fuel 115:288–94. doi:10.1016/j.fuel.2013.07.016
  • Tu, Q., Y. Cheng, P. Guo, J. Jiang, L. Wang, and R. Zhang. 2016. Experimental study of coal and gas outbursts related to gas enriched areas. Rock Mechanics and Rock Engineering 49 (9):3769–81. doi:10.1007/s00603-016-0980-6
  • Tu, Q., Y. Cheng, T. Ren, Z. Wang, J. Lin, and Y. Lei. 2019. Role of tectonic coal in coal and gas outburst behavior during coal mining. Rock Mechanics and Rock Engineering 52 (11):4619–53. doi:10.1007/s00603-019-01846-0
  • Tu, Q., S. Xue, Y. Cheng, W. Zhang, G. Shi, and G. Zhang. 2022. Experimental study on the guiding effect of tectonic coal for coal and gas outburst. Fuel 309:122087. doi:10.1016/j.fuel.2021.122087
  • Wang, C. H., and Y. P. Cheng. 2023. Role of coal deformation energy in coal and gas outburst: A review. Fuel 332:126019. doi:10.1016/j.fuel.2022.126019
  • Wang, C., S. Yang, D. Yang, X. Li, and C. Jiang. 2018. Experimental analysis of the intensity and evolution of coal and gas outbursts. Fuel 226:252–62. doi:10.1016/j.fuel.2018.03.165
  • Wang, H., Q. Zhang, L. Yuan, J. Xue, Q. Li, and B. Zhang. 2015. Coal and gas outburst simulation system based on CSIRO model. Chinese Journal of Rock Mechanics & Engineering 34 (11):2301–08. in Chinese.
  • Wang, H., B. Zhang, L. Yuan, G. Yu, and W. Wang. 2018. Gas release characteristics in coal under different stressed and their impact on outbursts. Energies 11 (10):2661. doi:10.3390/en11102661
  • Xu, C., Y. Cheng, L. Wang, and H. Zhou. 2014. Experiments on the effects of igneous sill on the physical properties of coal and gas occurrence. Journal of Natural Gas Science & Engineering 19:98–104. doi:10.1016/j.jngse.2014.04.022
  • Xue, S., Q. Tu, Y. Hao, Y. Yang, Z. Zhao, and X. Li. 2023. Occurrence and development criteria of coal and gas outbursts based on energy conversion. Fuel 341:127781. doi:10.1016/j.fuel.2023.127781
  • Yang, D., L. Pan, Y. Chen, and J. Tang. 2021. Comparison of outburst hazard of coal with different failure types: A case study. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 2021:1–13. doi:10.1080/15567036.2021.1922549
  • Yin, G., C. Jiang, J. Wang, J. Xu, D. Zhang, and G. Huang. 2016. A new experimental apparatus for coal and gas outburst simulation. Rock Mechanics & Rock Engineering 49 (5):2005–13. doi:10.1007/s00603-015-0818-7
  • Yin, G., X. Li, C. Jiang, G. Li, and B. Cai. 2010. Simulation experiments of coal and gas delay outburst in rock cross-cut coal uncovering. Journal of University of Science and Technology Beijing 32 (7):827–32. in Chinese.
  • Yuan, R. F., and H. Z. Li. 2013. Development and application of simulation test apparatus for gassy coal dynamic failure. Journal of China Coal Society 38 (S1):117–23. in Chinese.
  • Zhang, X., J. Tang, Y. Pan, and H. Yu. 2022. Experimental study on intensity and energy evolution of deep coal and gas outburst. Fuel 324:124884. doi:10.1016/j.fuel.2022.124484
  • Zhang, C., E. Wang, J. Xu, and S. Peng. 2021. A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal. Fuel 287:119493. doi:10.1016/j.fuel.2020.119493
  • Zhao, W., Y. Cheng, H. Jiang, K. Jin, H. Wang, and L. Wang. 2016. Role of the rapid gas desorption of coal powders in the developments stage of outbursts. Journal of Natural Gas Science & Engineering 28:491–501. doi:10.1016/j.jngse.2015.12.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.