138
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review on the applicability of hydrogen and natural gas as gaseous fuel for dual fuel engine operation

, ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 1559-1587 | Received 14 Oct 2022, Accepted 29 Nov 2023, Published online: 11 Jan 2024

References

  • Abbasi, T., S. M. Tauseef, and S. A. Abbasi. 2011. Biogas energy. New York, USA: Springer.
  • Abd-Alla, G. H., H. A. Soliman, O. A. Badr, and M. F. Abd-Rabbo. 2001. Effects of diluent admissions and intake air temperature in exhaust gas recirculation on the emissions of an indirect injection dual-fuel engine. Energy Conversion and Management 42 (8):1033–45. doi:10.1016/S0196-8904(00)00072-8.
  • Agarwal, A. K. 2007. Biofuels (alcohol and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science 33 (3):233–71. doi:10.1016/j.pecs.2006.08.003.
  • Alla, G. A., H. A. Soliman, O. A. Badr, and M. A. Rabbo. 2002. Effect of injection timing on the performance of a dual-fuel engine. Energy Conversion and Management 43 (2):269–77. doi:10.1016/S0196-8904(00)00168-0.
  • Alternative Fuels Data Centre U.S. Department of Energy. 2015. (http://www.afdc.energy.gov/fuels/fuel_properties.php).
  • Aziz, M., A. Darmawan, and F. B. Juangsa. 2021. Hydrogen production from biomasses and wastes: A technological review. International Journal of Hydrogen Energy 46 (68):33756–33781. doi:10.1016/j.ijhydene.2021.07.189.
  • Babu, M. G., and K. A. Subramanian. 2013. Alternative transportation fuels: Utilisation in combustion engines. United States: CRC Press.
  • Badr, O., G. A. Karim, and B. Liu. 1999. An examination of the flame spread limits in a dual-fuel engine. Applied Thermal Engineering 19 (10):1071–80. doi:10.1016/S1359-4311(98)00108-2.
  • Balasubramanian, D., and K. R. Lawrence. 2019. Influence on the effect of titanium dioxide nanoparticles as an additive with mimusops elengi methyl ester in a CI engine. Environmental Science and Pollution Research 26 (16):16493–16502. doi:10.1007/s11356-019-04826-7.
  • Balasubramanian, D., T. Wongwuttanasatian, I. Papla Venugopal, and A. Rajarajan. 2022. Exploration of combustion behavior in a compression ignition engine fuelled with low-viscous Pimpinella anisum and waste cooking oil biodiesel blends. Journal of Cleaner Production 331:129999.
  • Bose, P. K., and D. Maji. 2009. An experimental investigation on engine performance and emissions of a single-cylinder diesel engine using hydrogen as inducted fuel and diesel as injected fuel with exhaust gas recirculation. International Journal of Hydrogen Energy 34 (11):4847–54. doi:10.1016/j.ijhydene.2008.10.077.
  • BP Statistical Review of World EneWrgy. 2020. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf
  • Bui, T. T., D. Balasubramanian, A. T. Hoang, O. Konur, D. C. Nguyen, and V. N. Tran. 2021. Characteristics of PM and soot emissions of internal combustion engines running on biomass-derived DMF biofuel: A review. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (4):8335–8356.
  • Carlucci, A. P., A. Ficarella, and D. Laforgia. 2006. Control of the combustion behavior in a diesel engine using early injection and gas addition. Applied Thermal Engineering 26 (17):2279–86. doi:10.1016/j.applthermaleng.2006.03.016.
  • Castro, N., M. Toledo, and G. Amador. 2019. An experimental investigation of the performance and emissions of a hydrogen-diesel dual fuel compression ignition internal combustion engine. Applied Thermal Engineering 156:660–7. doi:10.1016/j.applthermaleng.2019.04.078.
  • Chen, H., J. He, and X. Zhong. 2018. Engine combustion and emission fuelled with natural gas: A review. Journal of the Energy Institute 92 (4):1123–36. doi:10.1016/j.joei.2018.06.005.
  • Chen, Z., L. Wang, and K. Zeng. 2019. A comparative study on the combustion and emissions of a dual-fuel engine fueled with natural gas/methanol, natural gas/ethanol, and natural gas/n-butanol. Energy Conversion and Management 192:11–19. doi:10.1016/j.enconman.2019.04.011.
  • Chintala, V., and K. A. Subramanian. 2014a. Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis. Energy 67:162–75. doi:10.1016/j.energy.2014.01.094.
  • Chintala, V., and K. A. Subramanian. 2014b. Experimental investigation on the effect of enhanced premixed charge on combustion characteristics of a direct injection diesel engine. International Journal of Advances in Engineering Sciences and Applied Mathematics 6 (1):3–16. doi:10.1007/s12572-014-0109-7.
  • Chintala, V., and K. A. Subramanian. 2014c. Hydrogen energy share improvement along with NOx (oxides of nitrogen) emission reduction in a hydrogen dual-fuel compression ignition engine using water injection. Energy Conversion and Management 83:249–59. doi:10.1016/j.enconman.2014.03.075.
  • Chintala, V., and K. A. Subramanian. 2015. An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies. Applied Energy 146:174–83. doi:10.1016/j.apenergy.2015.01.110.
  • Chintala, V., and K. A. Subramanian. 2017. A comprehensive review of the utilization of hydrogen in a compression ignition engine under dual-fuel mode. Renewable and Sustainable Energy Reviews 70:472–91. doi:10.1016/j.rser.2016.11.247.
  • Cho, H. M., and B. Q. He. 2007. Spark ignition natural gas engines—A review. Energy Conversion and Management 48 (2):608–18. doi:10.1016/j.enconman.2006.05.023.
  • Christodoulou, F., and A. Megaritis. 2013. Experimental investigation of the effects of separate hydrogen and nitrogen addition on the emissions and combustion of a diesel engine. International Journal of Hydrogen Energy 38 (24):10126–40. doi:10.1016/j.ijhydene.2013.05.173.
  • Crookes, R. J., T. Korakianitis, and A. M. Namasivayam. 2009. A systematic experimental assessment of the use of rapeseed methyl ester (RME) as a compression ignition engine fuel during conventional and dual-fuel operation. TAE 7th International Colloquium on Fuels, Stuttgart.
  • Das, L. M. 1990. Hydrogen engines: A view of the past and a look into the future. International Journal of Hydrogen Energy 15 (6):425–43. doi:10.1016/0360-3199(90)90200-I.
  • Dhole, A. E., R. B. Yarasu, D. B. Lata, and A. Priyam. 2014. Effect on performance and emissions of a dual-fuel diesel engine using hydrogen and producer gas as secondary fuels. International Journal of Hydrogen Energy 39 (15):8087–97. doi:10.1016/j.ijhydene.2014.03.085.
  • Dimitriou, P., M. Kumar, T. Tsujimura, and Y. Suzuki. 2018. Combustion and emission characteristics of a hydrogen-diesel dual-fuel engine. International Journal of Hydrogen Energy 43 (29):13605–17. doi:10.1016/j.ijhydene.2018.05.062.
  • Dimitriou, P., T. Tsujimura, and Y. Suzuki. 2019a. Adopting biodiesel as an indirect way to reduce the NOx emission of a hydrogen fumigated dual-fuel engine. Fuel 244:324–34. doi:10.1016/j.fuel.2019.02.010.
  • Dimitriou, P., T. Tsujimura, and Y. Suzuki. 2019b. Low-load hydrogen-diesel dual-fuel engine operation–A combustion efficiency improvement approach. International Journal of Hydrogen Energy 44 (31):17048–60. doi:10.1016/j.ijhydene.2019.04.203.
  • Duc, P. M., and K. Wattanavichien. 2007. Study on biogas premixed charge diesel dual-fuelled engine. Energy Conversion and Management 48 (8):2286–308. doi:10.1016/j.enconman.2007.03.020.
  • Edwin Geo, V., G. Nagarajan, and B. Nagalingam. 2008. Studies on dual-fuel operation of rubber seed oil and its bio-diesel with hydrogen as the inducted fuel. International Journal of Hydrogen Energy 33 (21):6357–67. doi:10.1016/j.ijhydene.2008.06.021.
  • Eichlseder, H., T. Wallner, R. Freymann, and J. Ringler 2003. The potential of hydrogen internal combustion engines in a future mobility scenario. SAE Technical Paper.
  • Fayaz, H., R. Saidur, N. Razali, F. S. Anuar, A. R. Saleman, and M. R. Islam. 2012. An overview of hydrogen as a vehicle fuel. Renewable and Sustainable Energy Reviews 16 (8):5511–28. doi:10.1016/j.rser.2012.06.012.
  • Gao, J., G. Tian, C. Ma, D. Balasubramanian, S. Xing, and P. Jenner. 2020. Numerical investigations of combustion and emissions characteristics of a novel small scale opposed rotary piston engine fuelled with hydrogen at wide open throttle and stoichiometric conditions. Energy Conversion and Management 221:113178. doi:10.1016/j.enconman.2020.113178.
  • Gazi, A. K. 1987. The dual fuel engine, a chapter in automotive engine alternatives. Edited by. R.L. Evens, United States: Springer.
  • Ghazal, O. H. 2019. Combustion analysis of hydrogen-diesel dual-fuel engine with water injection technique. Case Studies in Thermal Engineering 13:100380. doi:10.1016/j.csite.2018.100380.
  • Goel, V., N. Kumar, and P. Singh. February 1, 2014. Impact of modified parameters on diesel engine characteristics using biodiesel: A review. Renewable and Sustainable Energy Reviews 82:2716–29. doi:10.1016/j.rser.2017.09.112.
  • Haragopala Rao, B. 1983. Hydrogen for dual-fuel engine operation. International Journal of Hydrogen Energy 8 (5):381–84. doi:10.1016/0360-3199(83)90054-X.
  • Hegab, A., A. La Rocca, and P. Shayler. 2017. Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas. Renewable and Sustainable Energy Reviews 70:666–97. doi:10.1016/j.rser.2016.11.249.
  • Henham, A., and M. K. Makkar. 1998. Combustion of simulated biogas in a dual-fuel diesel engine. Energy Conversion and Management 39 (16):2001–09. doi:10.1016/S0196-8904(98)00071-5.
  • Heywood, J. B. 1988. Internal combustion engine fundamentals. New York: McGraw-Hill Book Co.
  • Hoang, A. T. 2020. Critical review on the characteristics of performance, combustion and emissions of PCCI engine controlled by early injection strategy based on narrow-angle direct injection (NADI. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2020.1805048.
  • Hoang, A. T., P. Murugesan, P. V. Elumalai, D. Balasubramanian, S. Parida, C. P. Jayabal, M. Nachippan, M. A. Kalam, T. Hai Truong, and D. Nam Cao. 2023. Strategic combination of waste plastic/tire pyrolysis oil with biodiesel for natural gas-enriched HCCI engine: Experimental analysis and machine learning model. Energy 280:128233.
  • Huang, Z. H., S. Shiga, T. Ueda, H. Nakamura, T. Ishima, T. Obokata, M. Tsue, and M. Kono. Effect of fuel injection timing relative to ignition timing on the natural-gas direct-injection combustion. July 1, 2003. Journal of Engineering for Gas Turbines and Power 125(3):783–90. doi:10.1115/1.1563243.
  • Huang, H., Z. Zhu, Y. Chen, Y. Chen, D. Lv, J. Zhu, and T. Ouyang. 2019. Experimental and numerical study of multiple injection effects on combustion and emission characteristics of natural gas–diesel dual-fuel engine. Energy Conversion and Management 183:84–96. doi:10.1016/j.enconman.2018.12.110.
  • Inbanaathan, P. V., D. Balasubramanian, M. Wae-Hayee, R. Ravikumar, I. Veza, N. Yukesh, M. A. Kalam, A. Sonthalia, and E. Geo Varuvel. 2023. Comprehensive study on using hydrogen-gasoline-ethanol blends as flexible fuels in an existing variable speed SI engine. International Journal of Hydrogen Energy 48(99):39531–52. doi:10.1016/j.ijhydene.2023.03.107.
  • Ishaq, H., I. Dincer, and C. Crawford. 2022. A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy 47 (62):26238–26264. doi:10.1016/j.ijhydene.2021.11.149.
  • Jabbr, A. I., and U. O. Koylu. 2019. Influence of operating parameters on performance and emissions for a compression-ignition engine fueled by hydrogen/diesel mixtures. International Journal of Hydrogen Energy 44 (26):13964–73. doi:10.1016/j.ijhydene.2019.03.201.
  • Jeyakumar, N., B. Narayanasamy, D. Balasubramanian, and K. Viswanathan. 2020. Characterization and effect of Moringa Oleifera Lam. antioxidant additive on the storage stability of jatropha biodiesel. Fuel 281:118614. doi:10.1016/j.fuel.2020.118614.
  • Kakoee, A., Y. Bakhshan, S. Motadayen Aval, and A. Gharehghani. 2018. An improvement of a lean burning condition of natural gas/diesel RCCI engine with a pre-chamber by using hydrogen. Energy Conversion and Management 166:489–99.
  • Karim, G. A. 1980. A review of combustion processes in the dual-fuel engine e the gas diesel engine. Progress in Energy and Combustion Science 6 (3):277–85. doi:10.1016/0360-1285(80)90019-2.
  • Karim, G. A. 2003. Combustion in gas-fueled compression: Ignition engines of the dual-fuel type. Journal of Engineering for Gas Turbines and Power 125 (3):827–36. doi:10.1115/1.1581894.
  • Karim, G. A. 2015. Dual-fuel diesel engines. Boca Raton, USA: CRC Press.
  • Karthickeyan, V., S. Thiyagarajan, and B. Ashok. 2020. Investigation of alternative fuels as low reactivity fuel in port-charged compression ignition (PCCI) engine. In Recent technologies for enhancing performance and reducing emissions in diesel engines, ed. J. Sadhik Basha, and R.B. Anand, 211–33. United States: IGI Global. https://www.igi-global.com/book/recent-technologies-enhancing-performance-reducing/236997.
  • Kim, Y. J., K. B. Kim, and K. H. Lee. 2011. Effect of a 2-stage injection strategy on the combustion and flame characteristics in a PCCI engine. International Journal of Automotive Technology 12 (5):639–44.
  • Knothe, G., and L. F. Razon. 2017. Biodiesel fuels. Progress in Energy and Combustion Science 58:36–59. doi:10.1016/j.pecs.2016.08.001.
  • Korakianitis, T., A. M. Namasivayam, and R. J. Crookes. 2011a. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Progress in Energy and Combustion Science 37 (1):89–112. doi:10.1016/j.pecs.2010.04.002.
  • Korakianitis, T., A. M. Namasivayam, and R. J. Crookes. 2011b. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Progress in Energy and Combustion Science 37 (1):89–112. doi:10.1016/j.pecs.2010.04.002.
  • Kumar, M. 2003. Use of hydrogen to enhance the performance of a vegetable oil fuelled compression ignition engine. International Journal of Hydrogen Energy 28:1143–54.
  • Kumar, M., A. R. Senthil, and B. Nagalingam. 2003. Use of hydrogen to enhance the performance of a vegetable oil fuelled compression ignition engine. International Journal of Hydrogen Energy 28 (10):1143–54.
  • Kusaka, J., T. Okamoto, Y. Daisho, R. Kihara, and T. Saito. 2000. Combustion and exhaust gas emission characteristics of a diesel engine dual-fuelled with natural gas. JSAE Review 21 (4):489–96. doi:10.1016/S0389-4304(00)00071-0.
  • Kuss, V. V., A. V. Kuss, R. G. Rosa, D. A. G. Aranda, and Y. R. Cruz. 2015. Potential of biodiesel production from palm oil at Brazilian Amazon. Renewable sustain. Renewable and Sustainable Energy Reviews 50:1013–20. doi:10.1016/j.rser.2015.05.055.
  • Lata, D. B., and A. Misra. 2010. Theoretical and experimental investigations on the performance of dual-fuel diesel engine with hydrogen and LPG as secondary fuels. International Journal of Hydrogen Energy 35 (21):11918–31. doi:10.1016/j.ijhydene.2010.08.039.
  • Liew, C., H. Li, S. Liu, M. C. Besch, B. Ralston, N. Clark, and Y. Huang. 2012. Exhaust emissions of a H2-enriched heavy-duty diesel engine equipped with cooled EGR and variable geometry turbocharger. Fuel 91 (1):155–63. doi:10.1016/j.fuel.2011.08.002.
  • Lingesan, S., K. Annamalai, M. Parthasarathy, K. M. Ramalingam, B. Dhinesh, and J. I. J. Lalvani. 2018. Production of Garcinia gummi-gutta methyl ester (GGME) as a potential alternative feedstock for existing unmodified DI diesel engine: Combustion, performance, and emission characteristics. Journal of Testing and Evaluation 46 (6):2661–78. doi:10.1520/JTE20170246.
  • Liu, Z. 1995. An examination of the combustion characteristics of compression ignition engines fuelled with gaseous fuels. Unpublished doctoral thesis. University of Calgary, Calgary, AB. doi:10.11575/PRISM/22538
  • Liu, H., Z. Wang, L. Bowen, J. Wang, and X. He. 2016. Exploiting new combustion regime using multiple premixed compression ignition (MPCI) fueled with gasoline/diesel/PODE (GDP. Fuel 186:639–47.
  • Liu, J., F. Yang, H. Wang, M. Ouyang, and S. Hao. 2013. Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual-fuel engine with optimized pilot injection timing. Applied Energy 110:201–06. doi:10.1016/j.apenergy.2013.03.024.
  • Lounici, M. S., K. Loubar, L. Tarabet, M. Balistrou, D. C. Niculescu, and M. Tazerout. 2014. Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions. Energy 64:200–11. doi:10.1016/j.energy.2013.10.091.
  • Maji, S., A. Pal, and B. Arora 2008. Use of CNG and diesel in CI engines in dual-fuel mode, SAE Technical Paper, 2008-28-0072. doi:10.4271/2008-28-0072.
  • Mansour, C., A. Bounif, A. Aris, and F. Gaillard. 2001. Gas–diesel (dual-fuel) modeling in diesel engine environment. International Journal of Thermal Science 40 (4):409–24. doi:10.1016/S1290-0729(01)01223-6.
  • Masood, M., S. N. Mehdi, and P. Ram Reddy. 2007. Experimental investigations on a hydrogen diesel dual-fuel engine at different compression ratios. Journal of Engineering for Gas Turbines and Power 129 (2):572–78. doi:10.1115/1.2227418.
  • Mathai, R., R. K. Malhotra, K. A. Subramanian, and L. M. Das. 2012. Comparative evaluation of performance, emission, lubricant and deposit characteristics of spark ignition engine fueled with CNG and 18% hydrogen-CNG. International Journal of Hydrogen Energy 37 (8):6893 900. doi:10.1016/j.ijhydene.2012.01.083.
  • Maurya, R. K., and A. K. Agarwal. 2011. Experimental study of combustion and emission characteristics of ethanol fuelled port-injected homogeneous charge compression ignition (HCCI) combustion engine. Applied Energy 88 (4):1169–80. doi:10.1016/j.apenergy.2010.09.015.
  • Maurya, R. K., and A. K. Agarwal. 2014. Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol-fueled HCCI engine. Fuel Processing Technology 126:30–48. doi:10.1016/j.fuproc.2014.03.031.
  • McTaggart-Cowan, G. P., H. L. Jones, S. N. Rogak, W. K. Bushe, P. G. Hill, and S. R. Munshi 2006. Direct-injected hydrogen methane mixtures in a heavy-duty compression ignition engine. SAE Technical Paper, 2006-01-0653.
  • Miyamoto, T., H. Hasegawa, M. Mikami, N. Kojima, H. Kabashima, and Y. Urata. 2011. Effect of hydrogen addition to intake gas on combustion and exhaust emission characteristics of a diesel engine. International Journal of Hydrogen Energy 36 (20):13138–49. doi:10.1016/j.ijhydene.2011.06.144.
  • Mokhatab, S., W. A. Poe, and J. Y. Mak 2015. Handbook of natural gas transmission and processing Oxford, UK: GPP, 3rd ed. Elsevier
  • Murugesan, P., A. T. Hoang, E. P. Venkatesan, D. S. Kumar, D. Balasubramanian, and A. T. Le. 2021. Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends. International Journal of Hydrogen Energy 47 (88):37617–34. doi:10.1016/j.ijhydene.2021.08.107.
  • Nag, S., P. Sharma, A. Gupta, and A. Dhar. 2019. Experimental study of engine performance and emissions for hydrogen diesel dual-fuel engine with exhaust gas recirculation. International Journal of Hydrogen Energy 44 (23):12163–75. doi:10.1016/j.ijhydene.2019.03.120.
  • Namasivayam, A. M., R. J. Crookes, T. Korakianitis, and J. Olsen. 2009. Assessment of combustion in natural gas fuelled compression ignition engines with DME and RME pilot ignition. Proceedings of the Institution of Mechanical Engineering, International Journal of Engine Research 10 (3):165–74. doi:10.1243/14680874JER02909.
  • Neely, G. D., S. Sasaki, and J. A. Leet. 2004. Experimental investigation of PCCI-DI combustion on emissions in a light-duty diesel engine. SAE Transactions 197–207.
  • Nwafor, O. M. I. 2007. Effect of advanced injection timing on emission characteristics of a diesel engine running on natural gas. Renewable Energy 32 (14):2361–68. doi:10.1016/j.renene.2006.12.006.
  • Oemichen, M. Hydrogen as an engine fuel. 1942. Engine Laboratory of the Technische Hochschule, Dresden, Germany, VDI-Verlag GmbH, Berlin NW, VDI Paper. (68)
  • Olsen, J., R. J. Crookes, and K. D. H. Bob-Manuel 2007. Experiments in dual-fuelling a compression ignition engine by injecting di-methyl ether as a pilot fuel to ignite varying quantities of natural gas. SAE Technical Paper, 2007-01-3624.
  • Pan, S., J. Wang, and Z. Huang. 2022. Effects of hydrogen injection strategy on the hydrogen mixture distribution and combustion of a gasoline/hydrogen SI engine under lean burn condition. International Journal of Hydrogen Energy 47 (57):24069–24079. doi:10.1016/j.ijhydene.2022.05.197.
  • Papagiannakis, R. G., and D. T. Hountalas. 2003. Experimental investigation concerning the effect of natural gas percentage on performance and emissions of a DI dual-fuel diesel engine. Applied Thermal Engineering 23 (3):353–65. doi:10.1016/S1359-4311(02)00187-4.
  • Papagiannakis, R. G., and D. T. Hountalas. 2004. Combustion and exhaust emission characteristics of a dual-fuel compression ignition engine operated with pilot diesel fuel and natural gas. Energy Conversion and Management 45 (18):2971–87. doi:10.1016/j.enconman.2004.01.013.
  • Papagiannakis, R. G., D. T. Hountalas, and C. D. Rakopoulos. 2007. Theoretical study of the effects of pilot fuel quantity and its injection timing on the performance and emissions of a dual-fuel diesel engine. Energy Conversion and Management 48 (11):2951–61. doi:10.1016/j.enconman.2007.07.003.
  • Papagiannakis, R., D. Hountalas, C. Rakopoulos, and D. Rakopoulos 2008. Combustion and performance characteristics of a DI diesel engine operating from low to high natural gas supplement ratios at various operating conditions. SAE Technical Paper. 2008-01-1392. doi:10.4271/2008-01-1392.
  • Paykani, A., A. H. Kakaee, P. Rahnama, and R. D. Reitz. 2015. Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion. Energy 90:814–826. doi:10.1016/j.energy.2015.07.112.
  • Pirouzpanah, V., R. KhoshbakhtiSaray, A. Sohrabi, and A. Niaei. 2007. Comparison of thermal and radical effects of EGR gases on combustion process in dual-fuel engines at part loads. Energy Conversion and Management 48 (7):1909–18. doi:10.1016/j.enconman.2007.01.031.
  • Prasad, B. N., J. K. Pandey, and G. N. Kumar. 2021. Effect of hydrogen enrichment on performance, combustion, and emission of a methanol fueled SI engine. International Journal of Hydrogen Energy 46 (49):25294–307. doi:10.1016/j.ijhydene.2021.05.039.
  • Rahimi, H. M., S. Ali Jazayeri, and M. Ebrahimi. 2020. Hydrogen energy share enhancement in a heavy duty diesel engine under RCCI combustion fueled with natural gas and diesel oil. International Journal of Hydrogen Energy 45 (35):17975–91.
  • Reitz, R. D., H. Ogawa, R. Payri, T. Fansler, S. Kokjohn, Y. Moriyoshi, A. K. Agarwal, D. Arcoumanis, D. Assanis, C. Bae, et al. 2020. IJER editorial: The future of the internal combustion engine. International Journal of Engine Research 21 (1):3–10. doi:10.1177/1468087419877990.
  • Rutz, D. 2007. Janssen R.BioFuel Technology Handbook. Germany: WIP Renewable Energies.
  • Sahoo, B. B., N. Sahoo, and U. K. Saha. 2009. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines-A critical review. Renewable and Sustainable Energy Reviews 13 (6):1151–84. doi:10.1016/j.rser.2008.08.003.
  • Salvi, B. L., and K. A. Subramanian. 2015. Sustainable development of road transportation sector using hydrogen energy system. Renewable and Sustainable Energy Reviews 51:1132–55. doi:10.1016/j.rser.2015.07.030.
  • Santoso, W. B., R. A. Bakar, and A. Nur. 2013. Combustion characteristics of diesel-hydrogen dual-fuel engine at low load. Energy Procedia 32:3–10. doi:10.1016/j.egypro.2013.05.002.
  • Saravanan, N., and G. Nagarajan. 2009. An experimental investigation on manifold-injected hydrogen as a dual fuel for diesel engine system with different injection duration. International Journal of Energy Research 33 (15):1352–66. doi:10.1002/er.1550.
  • Selim, M. Y. E. 2001. Pressure-time characteristics in a diesel engine fueled with natural gas. Renewable Energy 22 (4):473–89. doi:10.1016/S0960-1481(00)00115-4.
  • Selim, M. Y. E. 2003. Effect of exhaust gas recirculation on some combustion characteristics of the dual-fuel engine. Energy Conversion and Management 44 (5):707–21. doi:10.1016/S0196-8904(02)00083-3.
  • Selim, M. Y. E. 2004. Sensitivity of dual-fuel engine combustion and knocking limits to gaseous fuel composition. Energy Conversion and Management 45 (3):411–25. doi:10.1016/S0196-8904(03)00150-X.
  • Semin, R. A. B.2008. A technical review of compressed natural gas as an alternative fuel for internal combustion engines. Am. J. Eng. Appl. Sci 1 (4):302–11.
  • Semin Abu Bakar, R. 2008. A technical review of compressed natural gas as an alternative fuel for internal combustion engines. American Journal of Engineering and Applied Sciences 1 (4):302–11. doi:10.3844/ajeassp.2008.302.311.
  • Senthil Kumar, M., S. V. Karthic, and P. Pradeep. 2018. Investigations on the influence of ethanol and water injection techniques on engine’s behavior of hydrogen - biofuel based dual-fuel engine. International Journal of Hydrogen Energy 43 (45):21090–101. doi:10.1016/j.ijhydene.2018.09.145.
  • Serrano, J., F. J. Jiménez-Espadafor, and A. López. 2019. Analysis of the effect of different hydrogen/diesel ratios on the performance and emissions of a modified compression ignition engine under dual-fuel mode with water injection. Hydrogen-diesel dual-fuel mode. Energy 172:702–11. doi:10.1016/j.energy.2019.02.027.
  • Shahir, S. A., H. H. Masjuki, M. A. Kalam, A. Imran, I. R. Fattah, and A. Sanjid. 2014. Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety, and combustion. Renewable and Sustainable Energy Reviews 32:379–95. doi:10.1016/j.rser.2014.01.029.
  • Sharma, P., and A. Dhar. 2018. Compression ratio influence on combustion and emissions characteristic of hydrogen diesel dual fuel CI engine: Numerical study. Fuel 222:852–8. doi:10.1016/j.fuel.2018.02.108.
  • Sharma, Y. C., and V. Singh. 2017. Microalgal biodiesel: A possible solution for India’s energy security. Renewable and Sustainable Energy Reviews 67:72–88. doi:10.1016/j.rser.2016.08.031.
  • Shenghua, L., Z. Longbao, W. Ziyan, and R. Jiang. 2003. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 217 (9):833–8. doi:10.1177/095440700321700909.
  • Shim, E., H. Park, and C. Bae. 2020. Comparisons of advanced combustion technologies (HCCI, PCCI, and dual-fuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel 262:116436.
  • Singh, P., S. R. Chauhan, V. Goel, and A. K. Gupta. 2019a. Binary biodiesel blend endurance characteristics in a Compression Ignition Engine. Journal of Energy Resources Technology 141 (3). doi:10.1115/1.4041545.
  • Singh, P., S. R. Chauhan, V. Goel, and A. K. Gupta. March 1, 2019b. Binary biodiesel blend endurance characteristics in a Compression Ignition Engine. Journal of Energy Resources Technology. 141 (3): doi:10.1115/1.4041545.
  • Singh, R., and S. Maji. 2012. Performance and exhaust gas emissions analysis of direct injection CNG-diesel dual fuel engine. International Journal of Engineering Science and Technology 4 (3):833–46.
  • Singh, P., Varun, and S. R. Chauhan. 2016. Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review. Renewable and Sustainable Energy Reviews 63:269–91. doi:10.1016/j.rser.2016.05.069.
  • Singh, P., Varun, and S. R. Chauhan. April 1, 2017. Feasibility of a new non-edible feedstock in diesel engine: Investigation of performance, emission and combustion characteristics. Journal of Mechanical Science and Technology 31(4):1979–86. doi:10.1007/s12206-017-0347-2.
  • Srihari, S., and S. Thirumalini. 2017. Investigation on reduction of emission in PCCI-DI engine with biofuel blends. Renewable Energy 114:1232–37.
  • Srinivasan, K. K., S. R. Krishnan, and K. C. Midkiff. 2006. Improving low load combustion, stability, and emissions in pilot-ignited natural gas engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 220 (2):229–39. doi:10.1243/09544070JAUTO104.
  • Sukjit, E., J. M. Herreros, K. D. Dearn, A. Tsolakis, and K. Theinnoi. 2013. Effect of hydrogen on butanol–biodiesel blends in compression ignition engines. International Journal of Hydrogen Energy 38 (3):1624–35. doi:10.1016/j.ijhydene.2012.11.061.
  • Thiyagarajan, S., E. Varuvel, V. Karthickeyan, A. Sonthalia, G. Kumar, C. G. Saravanan, and B. Dhinesh, A. Pugazhendhi. 2022. Effect of hydrogen on compression-ignition (CI) engine fueled with vegetable oil/biodiesel from various feedstocks: A review. International Journal of Hydrogen Energy 47 (88):37648–37667. doi:10.1016/j.ijhydene.2021.12.147.
  • Thyagarajan, V., and M. G. Babu A combustion model for a dual fuel direct injection diesel engine. 1985. In Proceedings of COMODIA Symposium on Diagnostics and Modelling of Combustion in Reciprocating Engines, Tokyo, 607.
  • Torregrosa, A. J., A. Broatch, A. García, and L. F. Mónico. 2013. Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI diesel engines. Applied Energy 104:149–57.
  • Tree, D. R., and K. I. Svensson. 2007. Soot processes in compression ignition engines. Progress in Energy and Combustion Science 33 (3):272–309. doi:10.1016/j.pecs.2006.03.002.
  • Tsolakis, A., J. J. Hernandez, A. Megaritis, and M. Crampton. 2005. Dual fuel diesel engine operation using H2. Effect on particulate emissions. Energy & Fuels 19 (2):418–25. doi:10.1021/ef0400520.
  • Turns, S. R. 2000. An introduction to combustion: Concepts and applications. 2nd ed. New York, USA: McGraw–Hill.
  • U.S. Department of Energy. 2015. Clean cities alternative fuel price report
  • US Energy Investigation Administration (EIA) - Annual Energy Outlook. 2017. https://www.eia.gov/outlooks/aeo/data/browser/#/?id=1AEO2017&cases=ref2017&sourcekey=0.
  • Varde, K., and G. Frame. 1983. Hydrogen aspiration in a direct injection type diesel engine-its effects on smoke and other engine performance parameters. International Journal of Hydrogen Energy 8 (7):549–55. doi:10.1016/0360-3199(83)90007-1.
  • Varghese, R. J., H. Kolekar, and S. Kumar. 2019. Laminar burning velocities of H2/CO/CH4/CO2/N2-air mixtures at elevated temperatures. International Journal of Hydrogen Energy 44 (23):12188–99. doi:10.1016/j.ijhydene.2019.03.103.
  • Varuvel, E. G., S. Seetharaman, F. J. J. Shobana Bai, Y. Devarajan, and D. Balasubramanian. 2023. Development of artificial neural network and response surface methodology model to optimize the engine parameters of rubber seed oil–hydrogen on PCCI operation. Energy 283:129110.
  • Venugopal, I. P., D. Balasubramanian, and A. Rajarajan. 2021. Potential improvement in conventional diesel combustion mode on a common rail direct injection diesel engine with PODE/WCO blend as a high reactive fuel to achieve effective soot-NOx trade-off. Journal of Cleaner Production 327:129495.
  • Venugopal, I. P., D. Balasubramanian, A. Rajarajan, and K. Suresh. 2023. Quantification of φ-operating range with impact of exhaust gas recirculation under low-temperature combustion mode with polyoxymethylene dimethyl ether: A perspective study. Journal of Cleaner Production 411:137298.
  • Verma, S., L. M. Das, S. S. Bhatti, and S. C. Kaushik. 2017. A comparative exergetic performance and emission analysis of pilot diesel dual-fuel engine with biogas, CNG and hydrogen as main fuels. Energy Conversion and Management 151:764–77. doi:10.1016/j.enconman.2017.09.035.
  • Verma, S., L. M. Das, S. C. Kaushik, and S. K. Tyagi. 2018. An experimental investigation of exergetic performance and emission characteristics of hydrogen supplemented biogas-diesel dual fuel engine. International Journal of Hydrogen Energy 43 (4):2452–68. doi:10.1016/j.ijhydene.2017.12.032.
  • Veza, I., A. Afzal, M. A. Mujtaba, A. T. Hoang, D. Balasubramanian, M. Sekar, and N. Tamaldin, M. E. M. Soudagar, A. I. EL-Seesy, D. W. Djamari. 2022. Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine. Alexandria Engineering Journal 61 (11):8363–91. doi:10.1016/j.aej.2022.01.072.
  • Weaver, C. S., and S. H. Turner 1994. Dual fuel natural gas/diesel engines: technology, performance, and emissions. SAE Technical Paper.
  • White, T. R., B. E. Milton, and M. Behnia Direct injection of natural gas/liquid diesel fuel sprays. 2004. In Proceedings of the 15th Australasian Fluid Mechanics Conference. Sydney, Australia, The University of Sydney, (Vol. 1317).
  • White, C. M., R. R. Steeper, and A. E. Lutz. 2006. The hydrogen-fueled internal combustion engine: A technical review. International Journal of Hydrogen Energy 31 (10):1292–305. doi:10.1016/j.ijhydene.2005.12.001.
  • Wu, H. W., and Z. Y. Wu. 2013. Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting H2. Applied Energy 104:362–70. doi:10.1016/j.apenergy.2012.10.055.
  • Yadav, V. S., S. L. Soni, and D. Sharma. 2014. Engine performance of optimized hydrogen-fueled direct injection engine. Energy 65:116–22. doi:10.1016/j.energy.2013.12.007.
  • Yontar, A. A. 2019. Effects of ignition advance on a dual sequential ignition engine at alean mixture for hydrogen-enriched butane usage. International Journal of Hydrogen Energy 44 (29):15575–86. doi:10.1016/j.ijhydene.2019.04.088.
  • Zacharakis-Jutz, G. E. 2013. Performance characteristics of ammonia engines using direct injection strategies. Doctoral dissertation. Iowa State University.
  • Zhi, W., H. Liu, M. Xiao, J. Wang, S. Shuai, and R. D. Reitz. 2016. Homogeneous charge compression ignition (HCCI) combustion of polyoxymethylene dimethyl ethers (PODE. Fuel 183:206–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.