73
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Recycling of slaughterhouse waste cattle rumen fluid for biohydrogen production using Staphylococcus sciuri MK898925.1

, ORCID Icon &
Pages 2147-2157 | Received 19 May 2023, Accepted 12 Dec 2023, Published online: 23 Jan 2024

References

  • Ahmed, M. E., A. Nayek, A. Krizan, N. Coutard, A. Morozan, S. Ghosh Dey, R. Lomoth, L. Hammarstrom, V. Artero, and A. Dey. 2022. A bidirectional bioinspired [FeFe]-hydrogenase model. Journal of the American Chemical Society 144 (8):3614–25. doi:10.1021/jacs.1c12605.
  • Al-Gamal, M. S., G. A. Ibrahim, O. M. Sharaf, A. A. Radwan, N. M. Dabiza, A. M. Youssef, and M. F. El-Ssayad. 2019. The protective potential of selected lactic acid bacteria against the most common contaminants in various types of cheese in Egypt. Heliyon 5 (3):2–19. doi:10.1016/j.heliyon.2019.e01362.
  • Bergey, D. H. 1994. Bergey’s manual of determinative bacteriology. Maryland, USA: Lippincott Williams & Wilkins.
  • Bibi, S., D. Wang, Y. Wang, G. Mustafa, and H. Yu. 2023. Mitogenomic and phylogenetic analysis of the entomopathogenic fungus ophiocordyceps lanpingensis and comparative analysis with other ophiocordyceps species. Genes 14 (3):710. doi:10.3390/genes14030710.
  • Botta, L. S., R. P. Ratti, I. K. Sakamoto, L. R. Ramos, E. L. Silva, and M. B. A. Varesche. 2016. Bioconversion of waste office paper to hydrogen using pretreated rumen fluid inoculum. Bioprocess and Biosystems Engineering 39 (12):1887–97. doi:10.1007/s00449-016-1663-0.
  • Chairattanamanokorn, P., S. Tapananont, S. Detjaroen, J. Sangkhatim, P. Anurakpongsatorn, and P. Sirirote. 2012. Additional paper waste in pulping sludge for biohydrogen production by heat-shocked sludge. Applied Biochemistry and Biotechnology 166 (2):389–401. doi:10.1007/s12010-011-9434-5.
  • Chang, J. J., W. E. Chen, S. Y. Shih, S. J. Yu, J. J. Lay, F. S. Wen, and C. C. Huang. 2006. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR. Applied Microbiology and Biotechnology 70 (5):598–604. doi:10.1007/s00253-005-0106-7.
  • Chiariotti, A., and A. Crisa. 2018. Bio-hydrogen production from Buffalo Waste with Rumen Inoculum and metagenomic characterization of bacterial and archaeal community. Frontiers in Sustainable Food Systems 2:13–21. doi:10.3389/fsufs.2018.00013.
  • Dhanasekar, R., and S. Jonesh. 2018. Identification of a novel hydrogen producing bacteria from sugarcane bagasse waste. Biocatalysis and Agricultural Biotechnology 15:277–282. doi:10.1016/j.bcab.2018.07.003.
  • Fang, H. H., T. Zhang, and C. Li. 2006. Characterization of Fe-hydrogenase genes diversity and hydrogen-producing population in an acidophilic sludge. Journal of Biotechnology 126 (3):357–64. doi:10.1016/j.jbiotec.2006.04.023.
  • Goud, R. K., and S. V. Mohan. 2012. Acidic and alkaline shock pretreatment to enrich acidogenic biohydrogen producing mixed culture: Long term synergetic evaluation of microbial inventory, dehydrogenase activity and bio-electro kinetics. RSC Advances 2 (15):6336–6353. doi:10.1039/c2ra20526b.
  • Green, M. R., and J. Sambrook. 1954. Molecular cloning, a laboratory manual, 4th ed., Vol. 1, 175–84. New York: Cold Spring Harbor laboratory press.
  • Hidayati, Y. A., T. B. A. Kurnani, E. T. Marlina, K. N. Rahmah, E. Harlia, and I. M. Joni. 2018. The production of anaerobic bacteria and biogas from dairy cattle waste in various growth mediums. AIP Conference Proceedings 1927 (1):1–4.
  • Kloos, W. E., R. J. Zimmerman, and R. F. Smith. 1975. Preliminary studies on the characterization and distribution of Staphylococcus and Micrococcus species on animal skin. Applied and Environmental Microbiology 31 (1):53–59. doi:10.1128/aem.31.1.53-59.1976.
  • Laukova, A. 1994. Staphylococci associated with the rumen of young and wild ruminants. Letters in Applied Microbiology 19 (1):26–27. doi:10.1111/j.1472-765X.1994.tb00895.x.
  • Li, D., and H. Chen. 2007. Biological hydrogen production from steam exploded straw by simultaneous saccharification and fermentation. International Journal of Hydrogen Energy 32 (12):1742–48. doi:10.1016/j.ijhydene.2006.12.011.
  • Lipman, T. 2011. An overview of hydrogen production and storage systems with renewable hydrogen case studies. Clean Energy States Alliance 32:1–25.
  • Mazloomi, K., and C. Gomes. 2012. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews 16 (5):3024–3033. doi:10.1016/j.rser.2012.02.028.
  • Medina-Morales, M. A., E. Luis, L. A. Paredes-Pena, T. K. Morales-Martinez, J. A. Rodríguez-De, L. Garza, I. M. Moreno-Dávila, M. C. Tamayo-Ordonez, and L. J. Rios-Gonzalez. 2021. Biohydrogen production from thermochemically pretreated corncob using a mixed culture bioaugmented with Clostridium acetobutylicum. International Journal of Hydrogen Energy 46 (51):25974–84. doi:10.1016/j.ijhydene.2021.04.046.
  • Nyambura, S. M., W. Jufei, L. Hua, F. Xuebin, P. Xingjia, L. Bohong, R. Ahmad, X. Jialiang, G. V. Bertrand, J. Ndiithi, et al. 2022. Microwave co-pyrolysis of kitchen food waste and rice straw for waste reduction and sustainable biohydrogen production: Thermo-kinetic analysis and evolved gas analysis. Sustainable Energy Technologies and Assessments 52:102072. doi:10.1016/j.seta.2022.102072.
  • Ohnishi, A., Y. Hasegawa, N. Fujimoto, and M. Suzuki. 2022. Biohydrogen production by mixed culture of Megasphaera elsdenii with lactic acid bacteria as lactate-driven dark fermentation. Bioresource Technology 343:126076. doi:10.1016/j.biortech.2021.126076.
  • Pachiega, R., I. K. Sakamoto, M. B. Varesche, R. R. Hatanaka, J. E. D. Oliveira, and S. I. Maintinguer. 2019. Obtaining and characterization of mesophilic bacterial consortia from tropical sludges applied on biohydrogen production. Waste and Biomass Valorization 10 (6):1493–1502. doi:10.1007/s12649-017-0185-6.
  • Petrovic, B., M. Gorbounov, and S. M. Soltani. 2021. Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous and Mesoporous Materials 312:110751. doi:10.1016/j.micromeso.2020.110751.
  • Prins, R. A., and R. T. J. Clarke. 1980. Microbial ecology of the rumen. Digestive physiology and metabolism in ruminants. Springer, Dordrecht 9:179–204.
  • Pugazhendhi, A., H. Valsala, P. Priyadharsani, P. Prakash, and K. Thamaraiselvi. 2014. Fermentative hydrogen production by Enterobacter sp. KTSMBNL-01 Isolated from Municipal Sewage Sludge: Optimization Studies. In IJCA Proceedings on National Conference cum Workshop on Bioinformatics and Computational Biology. Sikkim. 2:25–28.
  • Ren, N., A. Wang, G. Cao, J. Xu, and L. Gao. 2009. Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnology Advances 27 (6):1051–60. doi:10.1016/j.biotechadv.2009.05.007.
  • Rohani, R., Y. T. Chung, and I. N. Mohamad. 2019. Purification of biohydrogen produced from palm oil mill effluent fermentation for fuel cell application. Korean Chemical Engineering Research 57 (4):469–74.
  • Salazar-Ardiles, C., T. Caimanque, A. Galetović, C. Vilo, J. E. Araya, N. Flores, and B. Gómez-Silva. 2020. Staphylococcus sciuri strain LCHXa is a free-living lithium-tolerant bacterium isolated from Salar de Atacama, Chile. Microorganisms [Internet] 8 (5):668. doi:10.3390/microorganisms8050668.
  • Sarangi, P. K., and S. Nanda. 2020. Biohydrogen production through dark fermentation. Chemical Engineering & Technology 43 (4):601–612. doi:10.1002/ceat.201900452.
  • Schmidt, O., H. L. Drake, and M. A. Horn. 2010. Hitherto unknown [Fe-Fe]-hydrogenase gene diversity in anaerobes and anoxic enrichments from a moderately acidic fen. Applied and Environmental Microbiology 76 (6):2027–2031. doi:10.1128/AEM.02895-09.
  • Sołowski, G. 2018. Biohydrogen production—sources and methods: A review. International Journal of Bioprocess and Biotechnological 2018 (1):1–22.
  • Srivatsava, S., Kumar, A., Pandey, A., and Pandey, A. 2017. Intensification of hydrogen production by B. licheniformis using kitchen waste as substrate. International Journal of Hydrogen Energy 42 (34):21659–21666.
  • Tawfik, M. A., A. A. Aboseidah, S. Heneidak, and A. H. M. Rasmey. 2022. Isolation and identification of ruminant bacteria for biohydrogen production from sugarcane molasses. Frontiers in Scientific Research and Technology 4 (1):91–98.
  • Turhal, S., M. Turanbaev, and H. Argun. 2019. Hydrogen production from melon and watermelon mixture by dark fermentation. International Journal of Hydrogen Energy 44 (34):18811–18817. doi:10.1016/j.ijhydene.2018.10.011.
  • Wald, R., C. Hess, V. Urbantke, T. Wittek, and M. Baumgartner. 2019. Characterization of Staphylococcus species isolated from bovine quarter milk samples. Animals 9 (5):200. doi:10.3390/ani9050200.
  • Wongthanate, J., K. Chinnacotpong, and M. Khumpong. 2014. Impacts of pH, temperature, and pretreatment method on biohydrogen production from organic wastes by sewage microflora. International Journal of Energy and Environmental Engineering 5 (1):1–6. doi:10.1186/2251-6832-5-6.
  • Xing, D., N. Ren, and B. E. Rittmann. 2008. Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [fe]-hydrogenase gene. Applied and Environmental Microbiology 74 (4):1232–1239. doi:10.1128/AEM.01946-07.
  • Yasin, N. H. M., T. Mumtaz, M. A. Hassan, and N. Abdul Rahman. 2013. Food waste and food processing waste for biohydrogen production: A review. Journal of Environmental Management 130:375–85. doi:10.1016/j.jenvman.2013.09.009.
  • Yokoyama, H., M. Waki, N. Moriya, T. Yasuda, Y. Tanaka, and K. Haga. 2006. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Applied Microbiology and Biotechnology 74 (2):474–83. doi:10.1007/s00253-006-0647-4.
  • Zhang, M. L., Y. T. Fan, Y. Xing, C. M. Pan, G. S. Zhang, and J. J. Lay. 2007. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass and Bioenergy 31 (4):250–254. doi:10.1016/j.biombioe.2006.08.004.
  • Zhu, J., W. Song, X. Chen, and S. Sun. 2023. Integrated process to produce biohydrogen from wheat straw by enzymatic saccharification and dark fermentation. International Journal of Hydrogen Energy 48 (30):11153–11161. doi:10.1016/j.ijhydene.2022.05.056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.