79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulation study to select optimal solid oxide fuel cells heat-up pattern from single, dual co-flow, and dual counter-flow alternatives

& ORCID Icon
Pages 1284-1305 | Received 08 Aug 2023, Accepted 15 Dec 2023, Published online: 08 Jan 2024

References

  • Aghaei, A., J. Mahmoudimehr, and N. Amanifard. 2024. The impact of gas flow channel design on dynamic performance of a solid oxide fuel cell. International Journal of Heat and Mass Transfer 219:124924. doi:10.1016/j.ijheatmasstransfer.2023.124924.
  • Al-Masri, A., M. Peksen, L. Blum, and D. Stolten. 2014. A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions. Applied Energy 135:539–47. doi:10.1016/j.apenergy.2014.08.052.
  • Apfel, H., M. Rzepka, H. Tu, and U. Stimming. 2006. Thermal start-up behaviour and thermal management SOFCs. Journal of Power Sources 154 (2):370–78. doi:10.1016/j.jpowsour.2005.10.052.
  • Bae, M., H. Cheon, J. Oh, D. Kim, J. Bae, and S. P. Katikaneni. 2021. Rapid start-up strategy of 1 kWe diesel reformer by solid oxide fuel cell integration. International Journal of Hydrogen Energy 46 (52):26575–81. doi:10.1016/j.ijhydene.2021.05.115.
  • Bae, Y., S. Lee, K. J. Yoon, J. H. Lee, and J. Hong. 2018. Three-dimensional dynamic modeling and transport analysis of solid oxide fuel cells under electrical load change. Energy Conversion and Management 165:405–18. doi:10.1016/j.enconman.2018.03.064.
  • Barelli, L., G. Bidini, D. A. Ciupăgeanu, C. Pianese, P. Polverino, and M. Sorrentino. 2020. Stochastic power management approach for a hybrid solid oxide fuel cell/battery auxiliary power unit for heavy duty vehicle applications. Energy Conversion and Management 221:113197. doi:10.1016/j.enconman.2020.113197.
  • Cao, S., Q. Cai, Y. Zhang, Q. Zhang, Q. Ye, W. Deng, and X. Wu. 2023. Evaluation of spectral regulation by selective emitter and filter under both ideal and actual conditions for solar thermophotovoltaic systems. Renewable Energy 217:119244. doi:10.1016/j.renene.2023.119244.
  • Chen, M. H., and T. L. Jiang. 2011. The analyses of the heat-up process of a planar, anode-supported solid oxide fuel cell using the dual-channel heating strategy. International Journal of Hydrogen Energy 36 (11):6882–93. doi:10.1016/j.ijhydene.2011.02.129.
  • Chen, H., S. Luo, T. Wu, Y. Wang, and X. Xu. 2023. Dynamic response and safety performance of an anode-supported solid oxide electrolysis cell operating under electrical transients. International Journal of Hydrogen Energy 52:108–24. doi:10.1016/j.ijhydene.2023.05.176.
  • Chi, Y., P. Li, J. Lin, J. Li, S. Mu, and Y. Song. 2023. Fast and safe heating-up control of a planar solid oxide cell stack: A three-dimensional model-in-the-loop study. Journal of Power Sources 560:232655. doi:10.1016/j.jpowsour.2023.232655.
  • Choudhary, T., and Sanjay. 2016. Computational analysis of IR-SOFC: Transient, thermal stress, carbon deposition and flow dependency. International Journal of Hydrogen Energy 41 (24):10212–27. doi:10.1016/j.ijhydene.2016.04.016.
  • Colpan, C. O., F. Hamdullahpur, and I. Dincer. 2010. Heat-up and start-up modeling of direct internal reforming solid oxide fuel cells. Journal of Power Sources 195 (11):3579–89. doi:10.1016/j.jpowsour.2009.12.021.
  • Damm, D. L., and A. G. Fedorov. 2006. Reduced-order transient thermal modeling for SOFC heating and cooling. Journal of Power Sources 159 (2):956–67. doi:10.1016/j.jpowsour.2005.11.072.
  • Delgado-Torres, A. M. 2018. Effect of ideal gas model with temperature-independent heat capacities on thermodynamic and performance analysis of open-cycle gas turbines. Energy Conversion and Management 176:256–73. doi:10.1016/j.enconman.2018.09.022.
  • Dong, S. K., W. N. Jung, K. Rashid, and A. Kashimoto. 2016. Design and numerical analysis of a planar anode-supported SOFC stack. Renewable Energy 94:637–50. doi:10.1016/j.renene.2016.03.098.
  • Emadi, M. A., N. Chitgar, O. A. Oyewunmi, and C. N. Markides. 2020. Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery. Applied Energy 261:114384. doi:10.1016/j.apenergy.2019.114384.
  • Fahs, I. E., and M. Ghassemi. 2021. Sensitivity analysis of thermal stress in a cathode porous electrode for a planar solid oxide fuel cell. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 43 (24):3357–70. doi:10.1080/15567036.2019.1607951.
  • Ferrari, M. L., A. Traverso, M. Pascenti, and A. F. Massardo. 2007. Early start-up of solid oxide fuel cell hybrid systems with ejector cathodic recirculation: Experimental results and model verification. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 221:627–35.
  • Fu, W., D. Kim, F. Wang, and G. Yushin. 2023. Stabilizing cathodes and interphases for next-generation Li-ion batteries. Journal of Power Sources 561:232738. doi:10.1016/j.jpowsour.2023.232738.
  • Guo, M., Q. He, C. Cheng, D. Zhao, and M. Ni. 2022. New interconnector designs for electrical performance enhancement of solid oxide fuel cells: A 3D modeling study. Journal of Power Sources 533:231373. doi:10.1016/j.jpowsour.2022.231373.
  • Hajabdollahi, Z., and P. F. Fu. 2017. Multi-objective based configuration optimization of SOFC-GT cogeneration plant. Applied Thermal Engineering 112:549–59. doi:10.1016/j.applthermaleng.2016.10.103.
  • Hajabdollahi, Z., F. Hajabdollahi, M. Tehrani, and H. Hajabdollahi. 2013. Thermo-economic environmental optimization of organic rankine cycle for diesel waste heat recovery. Energy 63:142–51. doi:10.1016/j.energy.2013.10.046.
  • Hami, M., and J. Mahmoudimehr. 2023a. Simulation-based multiobjective management of transient heating process of solid oxide fuel cell. Fuel Cells 23:188–201. doi:10.1002/fuce.202200113.
  • Hami, M., and J. Mahmoudimehr. 2023b. When to switch from heat-up to start-up in the warming-up process of a solid oxide fuel cell: A numerical study and multi-objective planning. Journal of Power Sources 585:233656. doi:10.1016/j.jpowsour.2023.233656.
  • Hami, M., and J. Mahmoudimehr. 2023c. Optimal heat-up planning of a solid oxide fuel cell with and without hot air recycling by considering energy, time and temperature gradient. Energy Technololgy 11 (7):2201401. doi:10.1002/ente.202201401.
  • Hu, B., G. Lau, D. Song, Y. Fukuyama, and M. C. Tucker. 2023. Optimization of metal-supported solid oxide fuel cells with a focus on mass transport. Journal of Power Sources 555:232402. doi:10.1016/j.jpowsour.2022.232402.
  • Khanafer, K., A. Al-Masri, K. Vafai, and P. Preethichandra. 2022. Heat up impact on thermal stresses in SOFC for mobile APU applications: Thermo-structural analysis. Sustainable Energy Technologies and Assessments 52:102159. doi:10.1016/j.seta.2022.102159.
  • Ki, J., and D. Kim. 2010. Computational model to predict thermal dynamics of planar solid oxide fuel cell stack during start-up process. Journal of Power Sources 195 (10):3186–200. doi:10.1016/j.jpowsour.2009.11.129.
  • Lee, D., T. Q. Quach, T. P. Israel, K. Y. Ahn, Y. Bae, and Y. S. Kim. 2022. Analysis of start-up behavior based on the dynamic simulation of an SOFC–engine hybrid system. Energy Conversion and Management 272:116384. doi:10.1016/j.enconman.2022.116384.
  • Lin, P. H., and C. W. Hong. 2009. Cold start dynamics and temperature sliding observer design of an automotive SOFC APU. Journal of Power Sources 187 (2):517–26. doi:10.1016/j.jpowsour.2008.11.043.
  • Liu, X. J., C. Y. Zhao, and J. M. Xu. 2023. Tailorable bandgap-dependent selective emitters for thermophotovoltaic systems. International Journal of Heat and Mass Transfer 200:123504. doi:10.1016/j.ijheatmasstransfer.2022.123504.
  • Li, B., C. Wang, M. Liu, J. Fan, and J. Yan. 2023. Transient performance analysis of a solid oxide fuel cell during power regulations with different control strategies based on a 3D dynamic model. Renewable Energy 218:119266. doi:10.1016/j.renene.2023.119266.
  • Luo, X. J., and K. F. Fong. 2016. Development of 2D dynamic model for hydrogen-fed and methane-fed solid oxide fuel cells. Journal of Power Sources 328:91–104. doi:10.1016/j.jpowsour.2016.08.005.
  • Peng, J., J. Huang, X. Wu, Y. Xu, H. Chen, and X. Li. 2021. Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review. Journal of Power Sources 505:230058. doi:10.1016/j.jpowsour.2021.230058.
  • Petruzzi, L., S. Cocchi, and F. Fineschi. 2003. A global thermo-electrochemical model for SOFC systems design and engineering. Journal of Power Sources 118 (1–2):96–107. doi:10.1016/S0378-7753(03)00067-3.
  • Qiu, F., Z. Sun, H. Li, and Y. Ahad. 2024. Design of a novel low-temperature polymer electrolyte membrane fuel cell: 3D modelling and experimental verification. Applied Thermal Engineering 236:121480. doi:10.1016/j.applthermaleng.2023.121480.
  • Roushenas, R., A. R. Razmi, M. Soltani, M. Torabi, M. B. Dusseault, and J. Nathwani. 2020. Thermo environmental analysis of a novel cogeneration system based on solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) coupled with turbocharger. Applied Thermal Engineering 181:115978. doi:10.1016/j.applthermaleng.2020.115978.
  • Sadeghi, M., A. S. Mehr, M. Zar, and M. Santarelli. 2018. Multi-objective optimization of a novel syngas fed SOFC power plant using a downdraft gasifier. Energy 148:16–31. doi:10.1016/j.energy.2018.01.114.
  • Selimovic, A., M. Kemm, T. Torisson, and M. Assadi. 2005. Steady state and transient thermal stress analysis in planar solid oxide fuel cells. Journal of Power Sources 145 (2):463–9. doi:10.1016/j.jpowsour.2004.11.073.
  • Son, J., S. Hwang, S. Hong, S. Heo, and Y. B. Kim. 2020. Parameter study on solid oxide fuel cell heat-up process to reaction starting temperature. International Journal of Precision Engineering and Manufacturing-Green Technology 7:1073–83. doi:10.1007/s40684-019-00129-x.
  • Wang, K., B. An, Z. Chu, Y. Wang, and Z. Liu. 2021. Evaluation of gas channel structures on cell performance and thermal stress in a solid oxide fuel cell. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–16. doi:10.1080/15567036.2021.1916655.
  • Wang, W., J. Liu, S. Serbin, D. Chen, and H. Zhou. 2022. Thermal stress analysis for a typical planar anode-supported fuel cell stack. Sustainable Energy Technologies and Assessments 54:102891. doi:10.1016/j.seta.2022.102891.
  • Wu, K., X. Wu, Z. Lin, H. Sun, M. Wang, and W. Lei. 2024. Identifying the calendar aging boundary and high temperature capacity fading mechanism of Li ion battery with Ni-rich cathode. Journal of Power Sources 589:233736. doi:10.1016/j.jpowsour.2023.233736.
  • Wu, X., Y. Xu, D. Zhao, X. Zhong, D. Li, J. Jiang, Z. Deng, X. Fu, and X. Li. 2020. Extended-range electric vehicle oriented thermoelectric surge control of a solid oxide fuel cell system. Applied Energy 263:114628. doi:10.1016/j.apenergy.2020.114628.
  • Xu, G., Z. Yu, L. Xia, C. Wang, and S. Ji. 2022. Performance improvement of solid oxide fuel cells by combining three-dimensional CFD modeling, artificial neural network and genetic algorithm. Energy Conversion and Management 268:116026. doi:10.1016/j.enconman.2022.116026.
  • Yuan, P., and S. F. Liu. 2016. Effect of non-uniform inlet flow rate on the heat-up process of a solid oxide fuel cell unit with cross-flow configuration. International Journal of Hydrogen Energy 41 (28):12377–86. doi:10.1016/j.ijhydene.2016.05.260.
  • Yuan, K., Y. Ma, H. Zhang, N. Razmjooy, and N. Ghadimi. 2023. Optimal parameters estimation of the proton exchange membrane fuel cell stacks using a combined owl search algorithm. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (4):11712–32. doi:10.1080/15567036.2023.2252672.
  • Zhang, J., C. Lenser, N. H. Menzler, and O. Guillon. 2020. Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500 ℃. Solid State Ionics 344:115138. doi:10.1016/j.ssi.2019.115138.
  • Zhang, L., Y. Xing, H. Xu, H. Wang, J. Zhong, and J. Xuan. 2017. Comparative study of solid oxide fuel cell combined heat and power system with multi-stage exhaust chemical energy recycling: Modeling, experiment and optimization. Energy Conversion and Management 139:79–88. doi:10.1016/j.enconman.2017.02.045.
  • Zheng, K., Y. Kuang, Z. Rao, and S. Shen. 2019. Numerical study on the effect of bi-polar plate geometry in the SOFC heating-up process. Journal of Renewable and Sustainable Energy 11 (1):014301. doi:10.1063/1.5047278.
  • Zhou, Y., X. Han, D. Wang, Y. Sun, and X. Li. 2023. Optimization and performance analysis of a near-zero emission SOFC hybrid system based on a supercritical CO2 cycle using solar energy. Energy Conversion and Management 280:116818. doi:10.1016/j.enconman.2023.116818.
  • Zhou, J., Z. Wang, and M. Han. 2023. Comparison of three different control strategies for load-change and attenuation of solid oxide fuel cell system. International Journal of Hydrogen Energy 48:30877–86. doi:10.1016/j.ijhydene.2023.04.171.
  • Zhu, P., Z. Wu, Y. Yang, H. Wang, R. Li, F. Yang, and Z. Zhang. 2023. The dynamic response of solid oxide fuel cell fueled by syngas during the operating condition variations. Applied Energy 349:121655. doi:10.1016/j.apenergy.2023.121655.
  • Zografos, A. I., W. A. Martin, and J. E. Sunderland. 1987. Equations of properties as a function of temperature for seven fluids. Computer Methods in Applied Mechanics and Engineering 61 (2):177–87. doi:10.1016/0045-7825(87)90003-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.