93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Activation of hydrochar derived from food waste via hydrothermal carbonization for Cu(II) adsorption

, , , , & ORCID Icon
Pages 1359-1369 | Received 30 Jun 2023, Accepted 14 Dec 2023, Published online: 11 Jan 2024

References

  • Abbas, A. F., and M. J. Ahmed. 2016. Mesoporous activated carbon from date stones (Phoenix dactylifera L.) by one-step microwave assisted K 2 CO 3 pyrolysis. Journal of Water Process Engineering 9:201–07. doi:10.1016/j.jwpe.2016.01.004.
  • Alguacil, F., L. Alcaraz, I. García-Díaz, and F. López. 2018. Removal of Pb2+ in wastewater via adsorption onto an activated carbon produced from winemaking waste. Metals 8 (9):697. doi:10.3390/met8090697.
  • Bandara, T., J. Xu, I. D. Potter, A. Franks, J. B. A. J. Chathurika, and C. Tang. 2020. Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere 254:126745. doi:10.1016/j.chemosphere.2020.126745.
  • Bhakta Sharma, H., S. Panigrahi, and B. K. Dubey. 2021. Food waste hydrothermal carbonization: Study on the effects of reaction severities, pelletization and framework development using approaches of the circular economy. Bioresource Technology 333:125187. doi:10.1016/j.biortech.2021.125187.
  • Chen, Q., R. Zhu, L. Deng, L. Ma, Q. He, J. Du, H. Fu, J. Zhang, and A. Wang. 2019. One-pot synthesis of novel hierarchically porous and hydrophobic Si/SiOx composite from natural palygorskite for benzene adsorption. Chemical Engineering Journal 378:122131. doi:10.1016/j.cej.2019.122131.
  • Duy Nguyen, H., H. Nguyen Tran, H.-P. Chao, and C.-C. Lin. 2019. Activated carbons derived from teak sawdust-hydrochars for efficient removal of methylene blue, copper, and cadmium from aqueous solution. Water 11 (12):2581. doi:10.3390/w11122581.
  • Dwyer, J., D. Starrenburg, S. Tait, K. Barr, D. J. Batstone, and P. Lant. 2008. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Research 42 (18):4699–709. doi:10.1016/j.watres.2008.08.019.
  • Eslami, A., S. M. Borghei, A. Rashidi, and A. Takdastan. 2018. Preparation of activated carbon dots from sugarcane bagasse for naphthalene removal from aqueous solutions. Separation Science and Technology 53 (16):2536–49. doi:10.1080/01496395.2018.1462832.
  • Fu, M.-M., C.-H. Mo, H. Li, Y.-N. Zhang, W.-X. Huang, and M. H. Wong. 2019. Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. Journal of Cleaner Production 236:117637. doi:10.1016/j.jclepro.2019.117637.
  • Funke, A., and F. Ziegler. 2010. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining 4 (2):160–77. doi:10.1002/bbb.198.
  • Guo, S., Y. Wang, X. Wei, Y. Gao, B. Xiao, and Y. Yang. 2020. Structural analysis and heavy metal adsorption of N-doped biochar from hydrothermal carbonization of camellia sinensis waste. Environmental Science and Pollution Research 27 (15):18866–74. doi:10.1007/s11356-020-08455-3.
  • Kambo, H. S., and A. Dutta. 2015. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews 45:359–78. doi:10.1016/j.rser.2015.01.050.
  • Kaushik, R., G. K. Parshetti, Z. Liu, and R. Balasubramanian. 2014. Enzyme-assisted hydrothermal treatment of food waste for co-production of hydrochar and bio-oil. Bioresource Technology 168:267–74. doi:10.1016/j.biortech.2014.03.022.
  • Kumar, S., and R. B. Gupta. 2008. Hydrolysis of microcrystalline cellulose in subcritical and supercritical Water in a continuous flow reactor. Industrial & Engineering Chemistry Research 47 (23):9321–29. doi:10.1021/ie801102j.
  • Liang, X., H. Xiao, Y. Shen, and C. Qi. 2010. One-step synthesis of novel sulfuric acid groups’ functionalized carbon via hydrothermal carbonization. Materials Letters 64 (8):953–55. doi:10.1016/j.matlet.2010.01.070.
  • Lin, Y., X. Ma, X. Peng, and Z. Yu. 2016. A mechanism study on hydrothermal carbonization of waste textile. Energy & Fuels 30 (9):7746–54. doi:10.1021/acs.energyfuels.6b01365.
  • Liu, Z., Z. Wang, H. Chen, T. Cai, and Z. Liu. 2021. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: A critical review. Environmental Pollution 268:115910. doi:10.1016/j.envpol.2020.115910.
  • Liu, Y., L. Wang, X. Wang, F. Jing, R. Chang, and J. Chen. 2020. Oxidative ageing of biochar and hydrochar alleviating competitive sorption of Cd(II) and Cu(II). Science of the Total Environment 725:138419. doi:10.1016/j.scitotenv.2020.138419.
  • Lv, J., Q. An, W. Zheng, Y. Fan, Z. Lei, and S. Zhai. 2016. Multifunctional hierarchical cabbage-like nZVI-Fe 3 O 4/C composites for efficient chromium (VI) removal. Journal of the Taiwan Institute of Chemical Engineers 65:312–22. doi:10.1016/j.jtice.2016.05.026.
  • Ma, G., S. Lin, C. Niu, R. Huang, and K. Chen. 2009. Survey and discussion on treatment status of food residue of kitchens in Guangdong Province. Modern Food Science & Technology 25 (12):1472–4. (in Chinese)
  • Malool, M. E., M. KeshavarzMoraveji, and J. Shayegan. 2022. Hydrothermal carbonization of digested sewage sludge coupled with alkali activation: Integrated approach for sludge handling, optimized production, characterization and Pb(II) adsorption. Journal of the Taiwan Institute of Chemical Engineers 133:104203. doi:10.1016/j.jtice.2022.104203.
  • Martins, S. I. F. S., W. M. F. Jongen, and M. A. J. S. van Boekel. 2000. A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology 11 (9):364–73. doi:10.1016/S0924-2244(01)00022-X.
  • Möller, M., P. Nilges, F. Harnisch, and U. Schröder. 2011. Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation. ChemSuschem 4 (5):566–79. doi:10.1002/cssc.201000341.
  • Niu, M., G. Li, L. Cao, X. Wang, and W. Wang. 2020. Preparation of sulphate aluminate cement amended bentonite and its use in heavy metal adsorption. Journal of Cleaner Production 256:120700. doi:10.1016/j.jclepro.2020.120700.
  • Qin, H., T. Hu, Y. Zhai, N. Lu, and J. Aliyeva. 2020. The improved methods of heavy metals removal by biosorbents: A review. Environmental Pollution 258:113777. doi:10.1016/j.envpol.2019.113777.
  • Sharma, H. B., A. K. Sarmah, and B. Dubey. 2020. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renewable and Sustainable Energy Reviews 123:109761. doi:10.1016/j.rser.2020.109761.
  • Sridhar, A., M. Ponnuchamy, A. Kapoor, and S. Prabhakar. 2022. Valorization of food waste as adsorbents for toxic dye removal from contaminated waters: A review. Journal of Hazardous Materials 424:127432. doi:10.1016/j.jhazmat.2021.127432.
  • Teng, H., and S.-C. Wang. 2000. Influence of oxidation on the preparation of porous carbons from Phenol−Formaldehyde resins with KOH activation. Industrial & Engineering Chemistry Research 39 (3):673–78. doi:10.1021/ie990473i.
  • Tong, S., J. Shen, X. Jiang, J. Li, X. Sun, Z. Xu, and D. Chen. 2021. Recycle of Fenton sludge through one-step synthesis of aminated magnetic hydrochar for Pb2+ removal from wastewater. Journal of Hazardous Materials 406:124581. doi:10.1016/j.jhazmat.2020.124581.
  • Tran, T. H., A. H. Le, T. H. Pham, D. T. Nguyen, S. W. Chang, W. J. Chung, and D. D. Nguyen. 2020. Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of the Total Environment 725:138325. doi:10.1016/j.scitotenv.2020.138325.
  • Unur, E. 2013. Functional nanoporous carbons from hydrothermally treated biomass for environmental purification. Microporous and Mesoporous Materials 168:92–101. doi:10.1016/j.micromeso.2012.09.027.
  • Valizadeh, S., H. Younesi, and N. Bahramifar. 2016. Highly mesoporous K2CO3 and KOH/activated carbon for SDBS removal from water samples: Batch and fixed-bed column adsorption process. Environmental Nanotechnology, Monitoring & Management 6:1–13. doi:10.1016/j.enmm.2016.06.005.
  • Wang, X., C. Li, F. You, X. Liu, and Y. Wang. 2018. Migration and transformation of nitrogen in sewage sludge during hydrothermal treatment. CIESC Journal 69 (6):2688–96.(in. Chinese.
  • Xi, Y., D. Yang, X. Qiu, H. Wang, J. Huang, and Q. Li. 2018. Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Industrial Crops and Products 124:747–54. doi:10.1016/j.indcrop.2018.08.018.
  • Yang, Y., C. Sun, Q. Huang, and J. Yan. 2022. Hierarchical porous structure formation mechanism in food waste component derived N-doped biochar: Application in VOCs removal. Chemosphere 291:132702. doi:10.1016/j.chemosphere.2021.132702.
  • Zhou, N., H. Chen, Q. Feng, D. Yao, H. Chen, H. Wang, Z. Zhou, H. Li, Y. Tian, and X. Lu. 2017. Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels. Journal of Cleaner Production 165:221–30. doi:10.1016/j.jclepro.2017.07.111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.