102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis of solar desalination using crushed granite stone as an energy storage material and the integration of solar district heating

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1370-1388 | Received 06 Apr 2023, Accepted 20 Dec 2023, Published online: 11 Jan 2024

References

  • Agrawal, R., T. Sharma, M. Gupta, A. Singh, H. Upadhyay, and A. Shrivastava. 2023. Augmenting the productivity of double slope solar still by incorporating sensible and latent heat storage materials. International Journal of Ambient Energy 44 (1):616–25. doi:10.1080/01430750.2022.2140192.
  • Arabkoohsar, A., and M. Sadi. 2020. A solar ptc powered absorption chiller design for co-supply of district heating and cooling systems in denmark. Energy 193:116789. doi:10.1016/j.energy.2019.116789.
  • Arabkoohsar, A., M. Sadi, A. Behzadi, and H. R. Rahbari. 2021. Techno-economic analysis and multiobjective optimization of a novel proposal for addressing summer-supply challenges of district heating systems. Energy Conversion and Management 236:113985. doi:10.1016/j.enconman.2021.113985.
  • Bait, O. 2019. Exergy, environ–economic and economic analyses of a tubular solar water heater assisted solar still. Journal of Cleaner Production 212:630–46. doi:10.1016/j.jclepro.2018.12.015.
  • Balachandran, G. B., P. W. David, G. Rajendran, M. N. A. Ali, V. Radhakrishnan, R. Balamurugan, M. Athikesavan, and R. Sathyamurthy. 2021. Investigation of performance enhancement of solar still incorporated with gallus gallus domesticus cascara as sensible heat storage material. Environmental Science and Pollution Research 28 (1):611–24. doi:10.1007/s11356-020-10470-3.
  • Bhargva, M., and A. Yadav. 2020. Experimental comparative study on a solar still combined with evacuated tubes and a heat exchanger at different water depths. International Journal of Sustainable Engineering 13 (3):218–29. doi:10.1080/19397038.2019.1653396.
  • Chaichan, M. T., H. A. Kazem, A. H. Al-Waeli, W. H. Elawee, M. A. Fayad, and K. Sopian. 2024. Advanced techniques for enhancing solar distiller productivity: A review. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 46 (1):736–72. doi:10.1080/15567036.2023.2289559.
  • Chen, Y., J. Wang, and P. D. Lund. 2020. Sustainability evaluation and sensitivity analysis of district heating systems coupled to geothermal and solar resources. Energy Conversion and Management 220:113084. doi:10.1016/j.enconman.2020.113084.
  • Dhivagar, R., M. Mohanraj, K. Hidouri, and Y. Belyayev. 2021. Energy, exergy, economic and enviro-economic (4e) analysis of gravel coarse aggregate sensible heat storage-assisted single-slope solar still. Journal of Thermal Analysis and Calorimetry 145 (2):475–94. doi:10.1007/s10973-020-09766-w.
  • Dhivagar, R., S. Shoeibi, H. Kargarsharifabad, M. H. Ahmadi, and M. Sharifpur. 2022. Performance enhancement of a solar still using magnetic powder as an energy storage medium‐exergy and environmental analysis. Energy Science and Engineering 10 (8):3154–66. doi:10.1002/ese3.1210.
  • Dubey, M., and D. R. Mishra. 2020. Thermo-exergo-economic analysis of double slope solar still augmented with ferrite ring magnets and gi sheet. Desalination and Water Treatment 198:19–30. doi:10.5004/dwt.2020.25947.
  • Elango, C., N. Gunasekaran, and K. Sampathkumar. 2015. Thermal models of solar still—a comprehensive review. Renewable and Sustainable Energy Reviews 47:856–911. doi:10.1016/j.rser.2015.03.054.
  • Ganesan, K., D. P. Winston, S. Ravishankar, and S. Muthusamy. 2022. Investigational study on improving the yield from hybrid pv/t modified conventional solar still with enhanced evaporation and condensation technique-an experimental approach. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (2):5267–86. doi:10.1080/15567036.2022.2083273.
  • Holman, J. P. 1966. Experimental methods for engineers. New York: McGraw-Hill.
  • Jathar, L. D., and S. Ganesan. 2022. Assessing the performance of concave type stepped solar still with brick, sand, and concrete pieces. International Journal of Ambient Energy 43 (1):3468–84. doi:10.1080/01430750.2020.1839551.
  • Javadi Yanbolagh, D., H. Mazaheri, A. Saraei, and S. Jafari Mehrabadi. 2020. Experimental study on the performance of three identical solar stills with different heating methods and external condenser fully powered by photovoltaic: Energy, exergy, and economic analysis. Energy Sources 1–21. doi:10.1080/15567036.2020.1817187.
  • Joshi, P., and G. Tiwari. 2018. Energy matrices, exergo-economic and enviro-economic analysis of an active single slope solar still integrated with a heat exchanger: A comparative study. Desalination 443:85–98. doi:10.1016/j.desal.2018.05.012.
  • Kanojiya, N. C., A. S. Shahare, and R. K. Sambare. 2023. Productivity, thermal, and exergy efficiency analyses of tubular solar still integrated with solar water heater. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (2):3584–601. doi:10.1080/15567036.2023.2196955.
  • Lumbreras, M., and R. Garay. 2020. Energy & economic assessment of façade-integrated solar thermal systems combined with ultra-low temperature district-heating. Renewable Energy 159:1000–14. doi:10.1016/j.renene.2020.06.019.
  • Muthu Manokar, A., D. Prince Winston, A. E. Kabeel, R. Sathyamurthy, and T. Arunkumar. 2018. Different parameter and technique affecting the rate of evaporation on active solar still -a review. Heat and Mass Transfer 54 (3):593–630. doi:10.1007/s00231-017-2170-9.
  • Nadgire, A., N. Chougule, and S. Barve. 2023. A review of the application of a thermoelectric module (tem) in solar still. International Journal of Ambient Energy 44 (1):20–30. doi:10.1080/01430750.2022.2068062.
  • Omara, Z., and A. Kabeel. 2014. The performance of different sand beds solar stills. International Journal of Green Energy 11 (3):240–54. doi:10.1080/15435075.2013.769881.
  • Panchal, H., K. K. Sadasivuni, M. Suresh, M. Israr, and S. Sengottain. 2022. A concise review on solar still with parabolic trough collector. International Journal of Ambient Energy 43 (1):4812–19. doi:10.1080/01430750.2021.1922938.
  • Parsa, S. M., A. Rahbar, D. Javadi, Y. M. H. Koleini, M. Afrand, and M. Amidpour. 2020. Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6e/ht) analysis of two passive/active solar still water desalination nearly 4000m: Altitude concept. Journal of Cleaner Production 261:121243. doi:10.1016/j.jclepro.2020.121243.
  • Patel, J., and S. Maiti. 2022. Parametric investigation of a small scale seawater desalination unit fabricated by integrating evacuated tube collector basin and air-cooled condenser. International Journal of Ambient Energy 43 (1):7237–46. doi:10.1080/01430750.2022.2063379.
  • Peng, G., S. W. Sharshir, Y. Wang, M. An, D. Ma, J. Zang, A. Kabeel, and N. Yang. 2021. Potential and challenges of improving solar still by micro/nano-particles and porous materials-a review. Journal of Cleaner Production 311:127432. doi:10.1016/j.jclepro.2021.127432.
  • Raj, G., D. Prabhansu, R. Kumar, P. Chandra, and S. Saurabh. 2020. Experimental study of solar still augmented with low-cost energy absorbing and releasing materials. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 42 (1):56–65. doi:10.1080/15567036.2019.1587054.
  • Ranjan, K., and S. Kaushik. 2013. Energy, exergy and thermo-economic analysis of solar distillation systems: A review. Renewable and Sustainable Energy Reviews 27:709–23. doi:10.1016/j.rser.2013.07.025.
  • Sachdev, T., and M. K. Mishra. 2022. Integrated simple design wind tower and enhanced solar still for hot and arid climate. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (3):6483–500. doi:10.1080/15567036.2022.2100013.
  • Sakthivel, T., and T. Arjunan. 2019. Thermodynamic performance comparison of single slope solar stills with and without cotton cloth energy storage medium. Journal of Thermal Analysis and Calorimetry 137 (1):351–60. doi:10.1007/s10973-018-7909-0.
  • Sambare, R. K., S. K. Dewangan, P. K. Gupta, and S. S. Joshi. 2021. Exergy and thermo-economic analyses of various tubular solar still configurations for improved performance. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 43 (21):2672–91. doi:10.1080/15567036.2021.1887977.
  • Samuel, D. H., P. Nagarajan, R. Sathyamurthy, S. El-Agouz, and E. Kannan. 2016. Improving the yield of fresh water in conventional solar still using low cost energy storage material. Energy Conversion and Management 112:125–34. doi:10.1016/j.enconman.2015.12.074.
  • Sarhaddi, F., F. F. Tabrizi, H. A. Zoori, and S. A. H. S. Mousavi. 2017. Comparative study of two weir type cascade solar stills with and without pcm storage using energy and exergy analysis. Energy Conversion and Management 133:97–109. doi:10.1016/j.enconman.2016.11.044.
  • Selvaraj, K., and A. Natarajan. 2018. Factors influencing the performance and productivity of solar stills-a review. Desalination 435:181–87. doi:10.1016/j.desal.2017.09.031.
  • Sharbatiyan, M. H., S. Rashidi, and M. Mirhosseini. 2023. Experimental study on the performance of floating solar desalination system with porous absorbent plate. Journal of the Taiwan Institute of Chemical Engineers 148:104677. doi:10.1016/j.jtice.2023.104677.
  • Sharon, H., K. Reddy, D. Krithika, and L. Philip. 2017. Experimental performance investigation of tilted solar still with basin and wick for distillate quality and enviro-economic aspects. Desalination 410:30–54. doi:10.1016/j.desal.2017.01.035.
  • Sharshir, S. W., M. Omara, A. Joseph, A. Kandeal, A. M. Elsaid, E. M. El-Said, I. Alatawi, M. Elashmawy, and G. B. Abdelaziz. 2023. Thermoenviroeconomic performance augmentation of solar desalination unit integrated with wick, nanofluid, and different nano-based energy storage materials. Solar Energy 262:111896. doi:10.1016/j.solener.2023.111896.
  • Shoeibi, S., H. Kargarsharifabad, S. A. A. Mirjalily, and T. Muhammad. 2022. Solar district heating with solar desalination using energy storage material for domestic hot water and drinking water – environmental and economic analysis. Sustainable Energy Technologies and Assessments 49:101713. doi:10.1016/j.seta.2021.101713.
  • Shyora, A., K. Patel, and H. Panchal. 2021. Comparative analysis of stepped and single basin solar still in climate conditions of gandhinagar gujarat during winter. International Journal of Ambient Energy 42 (14):1649–59. doi:10.1080/01430750.2019.1612781.
  • Soloha, R., I. Pakere, and D. Blumberga. 2017. Solar energy use in district heating systems. A case study in latvia. Energy 137:586–94. doi:10.1016/j.energy.2017.04.151.
  • Takilalte, A., A. Dali, M. Laissaoui, and A. Bouhallassa. 2023. Design and characterization of a single-axis solar tracker system for small scale parabolic trough collectors. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (4):11363–83. doi:10.1080/15567036.2023.2257646.
  • Tian, Z., B. Perers, S. Furbo, and J. Fan. 2018. Thermo-economic optimization of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series. Energy Conversion and Management 165:92–101. doi:10.1016/j.enconman.2018.03.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.