64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of Arrhenius kinetic on the magnetized nanofluid flow through a porous stretchable cylinder with slip conditions

& ORCID Icon
Pages 1979-1995 | Received 18 Sep 2023, Accepted 01 Jan 2024, Published online: 23 Jan 2024

References

  • Ahmad, A., and S. Asghar. 2012. Flow and heat transfer over hyperbolic stretching sheets. Applied Mathematics and Mechanics 33 (4):445–54. doi:10.1007/s10483-012-1562-6.
  • Akbar, N. S., S. Nadeem, R. U. Haq, and Z. Khan. 2013. Radiation effects on mhd stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chinese Journal of Aeronautics 26 (6):1389–97. doi:10.1016/j.cja.2013.10.008.
  • Andersson, H. I., O. R. Hansen, and B. Holmedal. 1994. Diffusion of a chemically reactive species from a stretching sheet. International Journal of Heat and Mass Transfer 37 (4):659–64. doi:10.1016/0017-9310(94)90137-6.
  • Andersson, H., and V. Kumaran. 2006. On sheet-driven motion of power-law fluids. International Journal of Non-Linear Mechanics 41 (10):1228–34. doi:10.1016/j.ijnonlinmec.2006.12.006.
  • Arain, M. B., A. Zeeshan, M. M. Bhatti, M. S. Alhodaly, and R. Ellahi. 2023. Description of non-Newtonian bioconvective sutterby fluid conveying tiny particles on a circular rotating disk subject to induced magnetic field. Journal of Central South University 30:2599–615.
  • Awad, F. G., S. Motsa, M. Khumalo, and X.-D. Wang. 2014. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy. PLoS One 9 (9):e107622. doi:10.1371/journal.pone.0107622.
  • Aziz, A., and W. Khan. 2012. Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate. International Journal of Thermal Sciences 52:83–90. doi:10.1016/j.ijthermalsci.2011.10.001.
  • Bestman, A. 1991. Radiative heat transfer to flow of a combustible mixture in a vertical pipe. International Journal of Energy Research 15 (3):179–84. doi:10.1002/er.4440150305.
  • Buongiorno, J. 2005. Convective transport in nanofluids. Journal of Heat Transfer 128 (3):240–50. doi:10.1115/1.2150834.
  • Cao, W., I. Animasaun, S.-J. Yook, V. Oladipupo, and X. Ji. 2022. Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: Ternary-hybrid nanofluid. International Communications in Heat and Mass Transfer 135:106069. doi:10.1016/j.icheatmasstransfer.2022.106069.
  • Daniel, Y. S., Z. A. Aziz, Z. Ismail, and F. Salah. 2017. Entropy analysis in electrical magnetohydrodynamic (MHD) flow of nanofluid with effects of thermal radiation, viscous dissipation, and chemical reaction. Theoretical and Applied Mechanics Letters 7 (4):235–42. doi:10.1016/j.taml.2017.06.003.
  • Daniel, Y. S., Z. A. Aziz, Z. Ismail, and F. Salah. 2018. Thermal stratification effects on mhd radiative flow of nanofluid over nonlinear stretching sheet with variable thickness. Journal of Computational Design and Engineering 5 (2):232–42. doi:10.1016/j.jcde.2017.09.001.
  • Daniel, Y. S., Z. A. Aziz, Z. Ismail, and F. Salah. 2019. Thermal radiation on unsteady electrical MHD flow of nanofluid over stretching sheet with chemical reaction. Journal of King Saud University-Science 31 (4):804–12. doi:10.1016/j.jksus.2017.10.002.
  • Das, K. 2012. Slip flow and convective heat transfer of nanofluids over a permeable stretching surface. Computers & Fluids 64:34–42. doi:10.1016/j.compfluid.2012.04.026.
  • Dinarvand, S., R. Hosseini, and I. Pop. 2015. Unsteady convective heat and mass transfer of a nanofluid in howarth’s stagnation point by buongiorno’s model. International Journal of Numerical Methods for Heat & Fluid Flow 25 (5):1176–97. doi:10.1108/HFF-04-2014-0095.
  • Dinarvand, S., R. Hosseini, and I. Pop. 2016. Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nanofluid using Tiwari-Das nanofluid model. International Journal of Numerical Methods for Heat & Fluid Flow 26 (1):40–62. doi:10.1108/HFF-12-2014-0387.
  • Elbashbeshy, E. 2001. Heat transfer over an exponentially stretching continuous surface with suction. Archives of Mechanics 53 (6):643–51.
  • Ganesh, N. V., Q. M. Al-Mdallal, G. Hirankumar, R. Kalaivanan, and A. J. Chamkha. 2022. Buoyancy-driven convection of MWCNT–Casson nanofluid in a wavy enclosure with a circular barrier and parallel hot/cold fins. Alexandria Engineering Journal 61 (4):3249–64. doi:10.1016/j.aej.2021.08.055.
  • Gupta, P., and A. Gupta. 1977. Heat and mass transfer on a stretching sheet with suction or blowing. The Canadian Journal of Chemical Engineering 55 (6):744–46. doi:10.1002/cjce.5450550619.
  • Hussain, A., M. Malik, M. Awais, T. Salahuddin, and S. Bilal. 2019. Computational and physical aspects of MHD Prandtl-Eyring fluid flow analysis over a stretching sheet. Neural Computing and Applications 31 (S1):425–33. doi:10.1007/s00521-017-3017-5.
  • Jalil, M., S. Asghar, and M. Mushtaq. 2013. Analytical solutions of the boundary layer flow of power-law fluid over a power-law stretching surface. Communications in Nonlinear Science and Numerical Simulation 18 (5):1143–50. doi:10.1016/j.cnsns.2012.09.030.
  • Kalaivanan, R., N. V. Ganesh, and Q. M. Al-Mdallal. 2021. Buoyancy driven flow of a second-grade nanofluid flow taking into account the Arrhenius activation energy and elastic deformation: Models and numerical results. Fluid Dynamics & Materials Processing 17 (2):319–32. doi:10.32604/fdmp.2021.012789.
  • Keskin, A. Ü. 2019. Solution of BVPs Using bvp4c and bvp5c of MATLAB. In Boundary Value Problems for Engineers, 417–510. Cham: Springer. doi:10.1007/978-3-030-21080-9_10.
  • Khan, M. 2020. Numerical analysis of oblique stagnation point flow of nanofluid over a curved stretching/shrinking surface. Physica Scripta 95 (10):105704. doi:10.1088/1402-4896/abb5c5.
  • Khan, U., S. T. Mohyud-Din, and B. Bin-Mohsin. 2016. Convective heat transfer and thermo-diffusion effects on flow of nanofluid towards a permeable stretching sheet saturated by a porous medium. Aerospace Science and Technology 50:196–203. doi:10.1016/j.ast.2015.12.032.
  • Khan, W. A., M. J. Uddin, and A. I. M. Ismail. 2012. Effect of momentum slip on double-diffusive free convective boundary layer flow of a nanofluid past a convectively heated vertical plate. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 226 (3):99–109. doi:10.1177/1740349912452058.
  • Khan, U., A. Zaib, I. Khan, and K. S. Nisar. 2020. Activation energy on mhd flow of titanium alloy (Ti6Al4V) nanoparticle along with a cross flow and streamwise direction with binary chemical reaction and non-linear radiation: Dual solutions. Journal of Materials Research and Technology 9 (1):188–99. doi:10.1016/j.jmrt.2019.10.044.
  • Li, X., A. U. Khan, M. R. Khan, S. Nadeem, and S. U. Khan. 2019. Oblique stagnation point flow of nanofluids over stretching/shrinking sheet with Cattaneo–Christov heat flux model: Existence of dual solution. Symmetry 11 (9):1070. doi:10.3390/sym11091070.
  • Magyari, E., and B. Keller. 1999. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. Journal of Physics D: Applied Physics 32 (5):577. doi:10.1088/0022-3727/32/5/012.
  • Magyari, E., and A. Pantokratoras. 2011. Note on the effect of thermal radiation in the linearized rosseland approximation on the heat transfer characteristics of various boundary layer flows. International Communications in Heat and Mass Transfer 38 (5):554–56. doi:10.1016/j.icheatmasstransfer.2011.03.006.
  • Makinde, O., and I. Animasaun. 2016. Bioconvection in mhd nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. International Journal of Thermal Sciences 109:159–71. doi:10.1016/j.ijthermalsci.2016.06.003.
  • Mustafaa, M., T. Hayat, and S. Obaidat. 2013. Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions. International Journal of Numerical Methods for Heat & Fluid Flow 23 (6):945–59. doi:10.1108/HFF-09-2011-0179.
  • Mustafa, M., J. A. Khan, T. Hayat, and A. Alsaedi. 2017. Buoyancy effects on the mhd nanofluid flow past a vertical surface with chemical reaction and activation energy. International Journal of Heat and Mass Transfer 108:1340–46. doi:10.1016/j.ijheatmasstransfer.2017.01.029.
  • Okonkwo, E. C., I. Wole-Osho, I. W. Almanassra, Y. M. Abdullatif, and T. Al-Ansari. 2021. An updated review of nanofluids in various heat transfer devices. Journal of Thermal Analysis and Calorimetry 145 (6):2817–72. doi:10.1007/s10973-020-09760-2.
  • Rajagopal, K., and A. Gupta. 1984. An exact solution for the flow of a non-Newtonian fluid past an infinite porous plate. Meccanica 19 (2):158–60. doi:10.1007/BF01560464.
  • Rana, P., and R. Bhargava. 2012. Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study. Communications in Nonlinear Science and Numerical Simulation 17 (1):212–26. doi:10.1016/j.cnsns.2011.05.009.
  • Rana, S., M. Junaid, R. Mehmood, and M. Bhatti. 2023. Transport of chemical species alongside magnetic pseudoplastic nanomaterial through a porous surface. Modern Physics Letters B 37 (22):2350062. doi:10.1142/S0217984923500628.
  • Reddy, Y. D., B. S. Goud, M. R. Khan, M. A. Elkotb, and A. M. Galal. 2022. Transport properties of a hydromagnetic radiative stagnation point flow of a nanofluid across a stretching surface. Case Studies in Thermal Engineering 31:101839. doi:10.1016/j.csite.2022.101839.
  • Rehman, F. U., S. Nadeem, and R. U. Haq. 2017. Heat transfer analysis for three-dimensional stagnation-point flow over an exponentially stretching surface. Chinese Journal of Physics 55 (4):1552–60. doi:10.1016/j.cjph.2017.05.006.
  • Shafique, Z., M. Mustafa, and A. Mushtaq. 2016. Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results in Physics 6:627–33. doi:10.1016/j.rinp.2016.09.006.
  • Sohail, A., M. Uddin, and M. Rashidi. 2016. Numerical study of free convective flow of a nanofluid over a chemically reactive porous flat vertical plate with a second-order slip model. Journal of Aerospace Engineering 29 (2):04015047. doi:10.1061/(ASCE)AS.1943-5525.0000544.
  • Sus, C. 1995. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. ASME FED1995 (231):99–I05.
  • Tuz Zohra, F., M. J. Uddin, M. F. Basir, and A. I. M. Ismail. 2020. Magnetohydrodynamic bio-nano-convective slip flow with Stefan blowing effects over a rotating disc. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems 234 (3–4):83–97. doi:10.1177/2397791419881580.
  • Uddin, M. J., O. A. Bég, and A. I. Ismail. 2015. Radiative convective nanofluid flow past a stretching/shrinking sheet with slip effects. Journal of Thermophysics and Heat Transfer 29 (3):513–23. doi:10.2514/1.T4372.
  • Wong, K. V., and O. De Leon. 2010. Applications of nanofluids: Current and future. Advances in Mechanical Engineering 2:519659. doi:10.1155/2010/519659.
  • Zeeshan, A., M. B. Arain, M. M. Bhatti, F. Alzahrani, and O. A. Bég. 2022. Radiative bioconvection nanofluid squeezing flow between rotating circular plates: Semi-numerical study with the DTM-Pade approach. Modern Physics Letters B 36 (3):2150552. doi:10.1142/S0217984921505527.
  • Zeeshan, A., M. M. Maskeen, and O. U. Mehmood. 2018. Hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media. Neural Computing and Applications 30 (11):3479–89. doi:10.1007/s00521-017-2934-7.
  • Zhang, X.-H., A. Abidi, A. E.-S. Ahmed, M. R. Khan, M. El-Shorbagy, M. Shutaywi, A. Issakhov, and A. M. Galal. 2021. Mhd stagnation point flow of nanofluid over a curved stretching/shrinking surface subject to the influence of joule heating and convective condition. Case Studies in Thermal Engineering 26:101184. doi:10.1016/j.csite.2021.101184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.