53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Active power optimization control of speed closed-loop engine for energy saving in hydraulic excavator

ORCID Icon, , , , &
Pages 1734-1748 | Received 30 Aug 2023, Accepted 01 Jan 2024, Published online: 21 Jan 2024

References

  • Bertolin, M., and A. Vacca. 2021. An energy efficient power-split hybrid transmission system to drive hydraulic implements in construction machines. Journal of Dynamic Systems, Measurement, and Control 143 (10):101005. doi:10.1115/1.4051035.
  • Casoli, P., F. Scolari, C. M. Vescovini, and M. Rundo. 2022. Energy comparison between a load sensing system and electro-hydraulic solutions applied to a 9-ton excavator. Energies 15 (7):2583. doi:10.3390/en15072583.
  • Do, T. C., T. D. Dang, T. Q. Dinh. 2021. Developments in energy regeneration technologies for hydraulic excavators: A review. Renewable and Sustainable Energy Reviews 145:111076. doi:10.1016/j.rser.2021.111076.
  • Eraliev, O. M. U., K. H. Lee, D. Y. Shin. 2022. Sensing, perception, decision, planning and action of autonomous excavators. Automation in Construction 141:104428. doi:10.1016/j.autcon.2022.104428.
  • Fresia, P., M. Rundo, D. Padovani. 2022. Combined speed control and centralized power supply for hybrid energy-efficient mobile hydraulics. Automation in Construction 140:104337. doi:10.1016/j.autcon.2022.104337.
  • Fu, S., Z. Li, T. Lin. 2020. A positive flow control system for electric excavators based on variable speed control. Applied Sciences 10 (14):4826.
  • Fu, S., L. Wang, and T. Lin. 2020. Control of electric drive powertrain based on variable speed control in construction machinery. Automation in Construction 119:103281. doi:10.1016/j.autcon.2020.103281.
  • Fu, W., X. Yuan, Y. Li, and L. Zhang. 2022. Research on optimal control of excavator negative control system based on secondary controllable main valve. Institute of Electrical and Electronics Engineers Access 10:7566–73. doi:10.1109/ACCESS.2022.3141446.
  • Ge, L., L. Quan, X. Zhang, B. Zhao, and J. Yang. 2017. Efficiency improvement and evaluation of electric hydraulic excavator with speed and displacement variable pump. Energy Conversion and Management 150:62–71. doi:10.1016/j.enconman.2017.08.010.
  • Gong, J., D. Zhang, C. Liu. 2019. Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system. Applied Energy 233:724–34. doi:10.1016/j.apenergy.2018.10.066.
  • Huang, W., X. Zhang, L. Ge, and L. Quan. 2021. Dual source integrated driving for hydraulic excavator swing system. Institute of Electrical and Electronics Engineers Access 9:120755–64. doi:10.1109/ACCESS.2021.3108796.
  • Li, J., S. Li, Z. Ji, and Y. Wang. 2023. Design and energy analysis of a flywheel-based boom energy regeneration system for hydraulic excavators. Frontiers in Energy Research 11:1202914. doi:10.3389/fenrg.2023.1202914.
  • Lin, T., Y. Lin, H. Ren. 2021. A double variable control load sensing system for electric hydraulic excavator. Energy 223:119999. doi:10.1016/j.energy.2021.119999.
  • Nguyen, T. H., T. C. Do, and K. K. Ahn. 2022. A study on a new independent metering valve for hydraulic boom excavator. Applied Sciences 12 (2):605. doi:10.3390/app12020605.
  • Nguyen, T. H., T. C. Do, V. H. Nguyen, and K. K. Ahn. 2022. High tracking control for a new independent metering valve system using velocity-load feedforward and position feedback methods. Applied Sciences 12 (19):9827. doi:10.3390/app12199827.
  • Outbib, R., G. Graton, X. Dovifaaz, and R. Younes. 2014. Speed control of automotive diesel engines. International Journal of Control 87 (4):812–26. doi:10.1080/00207179.2013.860237.
  • Park, C., M. Ebisu, and C. Bae. 2021. Effects of turbocharger rotation inertia on instantaneous turbine efficiency in a Turbocharged-Gasoline Direct Injection (T-GDI) engine. Journal of Engineering for Gas Turbines and Power 143 (1):011006. doi:10.1115/1.4049299.
  • Park, C., M. Ebisu, and C. Bae. 2022. Effects of turbocharger rotational inertia on engine and turbine performance in a turbocharged gasoline direct injection engine under transient and steady conditions. International Journal of Engine Research 23 (1):90–103. doi:10.1177/1468087420984600.
  • Qin, T., Y. Li, L. Quan, and L. Yang. 2022. An adaptive robust impedance control considering energy saving of hydraulic excavator boom and stick systems. IEEE/ASME Transactions on Mechatronics 27 (4):1928–36. doi:10.1109/TMECH.2022.3173991.
  • Shi, Y., Y. Xia, Y. Zhang, and Z. Yao. 2020. Intelligent identification for working-cycle stages of excavator based on main pump pressure. Automation in Construction 109:102991. doi:10.1016/j.autcon.2019.102991.
  • Su, D., L. Hou, S. Wang. 2022. Energy flow analysis of excavator system based on typical working condition load. Electronics 11 (13):1987.
  • Tan, L., X. He, G. Xiao. 2022. Design and energy analysis of novel hydraulic regenerative potential energy systems. Energy 249:123780. doi:10.1016/j.energy.2022.123780.
  • Wang, D., C. Guan, S. Pan, M. Zhang, and X. Lin. 2009. Performance analysis of hydraulic excavator powertrain hybridization. Automation in Construction 18 (3):249–57. doi:10.1016/j.autcon.2008.10.001.
  • Wang, H., Q. Wang, and B. Hu. 2017. A review of developments in energy storage systems for hybrid excavators. Automation in Construction 80:1–10. doi:10.1016/j.autcon.2017.03.010.
  • Wang, J., H. Xu, X. Hou. 2021. A moment-of-inertia-driven engine start-up strategy for four-wheel-drive hybrid electric vehicles. IEEE Transactions on Transportation Electrification 8 (3):3320–35.
  • Xu, J., and H. S. Yoon. 2019. Vision-based estimation of excavator manipulator pose for automated grading control. Automation in Construction 98:122–131. doi:10.1016/j.autcon.2018.11.022.
  • Yan, Z., L. Ge, and L. Quan. 2022. Energy-efficient electro-hydraulic power source driven by variable-speed motor. Energies 15 (13):4804. doi:10.3390/en15134804.
  • Yang, C., L. Zhou, J. Wang. 2023. Research on energy saving system of hydraulic excavator based on three-chamber accumulator. Journal of Energy Storage 72:108571. doi:10.1016/j.est.2023.108571.
  • Yan, X., S. Nie, H. Ji. 2023. A novel energy-efficient transmission system and control strategy for hydraulic machines. International Journal of Energy Research 2023. doi:10.1155/2023/6275886.
  • Yao, J., P. Wang, Y. Yin, M. Li, and Y. Li. 2020. Power management of multi-source network hydraulic system with multiple actuators. Energy Conversion and Management 223:113247. doi:10.1016/j.enconman.2020.113247.
  • Yu, Y., T. C. Do, B. Yin, and K. K. Ahn. 2023. Improvement of energy saving for hybrid hydraulic excavator with novel powertrain. International Journal of Precision Engineering and Manufacturing-Green Technology 10 (2):521–34. doi:10.1007/s40684-022-00437-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.