53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical analysis of the effect of stress change on methane diffusion in coal matrix

, ORCID Icon, , , , & show all
Pages 1749-1763 | Received 08 Aug 2023, Accepted 01 Jan 2024, Published online: 21 Jan 2024

References

  • An, F., Y. Cheng, L. Wang, and W. Li. 2013. A numerical model for outburst including the effect of adsorbed gas on coal deformation and mechanical properties. Computers and Geotechnics 54:222–231. doi:10.1016/j.compgeo.2013.07.013.
  • An, F., H. Jia, and Y. Feng. 2022. Effect of stress, concentration and temperature on gas diffusion coefficient of coal measured through a direct method and its model application. Fuel 312:122991. doi:10.1016/j.fuel.2021.122991.
  • An, F., Y. Yuan, X. Chen, Z. Li, and L. Li. 2019. Expansion energy of coal gas for the initiation of coal and gas outbursts. Fuel 235:551–557. doi:10.1016/j.fuel.2018.07.132.
  • Cai, J., Z. Zhang, W. Wei, D. Guo, S. Li, and P. Zhao. 2019. The critical factors for permeability-formation factor relation in reservoir rocks: Pore-throat ratio, tortuosity and connectivity. Energy 188:116051. doi:10.1016/j.energy.2019.116051.
  • Cai, Y., Z. Pan, D. Liu, G. Zheng, S. Tang, L. D. Connell, Y. Yao, and Y. Zhou. 2014. Effects of pressure and temperature on gas diffusion and flow for primary and enhanced coalbed methane recovery. Energy Exploration & Exploitation 32 (4):601–619. doi:10.1260/0144-5987.32.4.601.
  • Chen, T., Y. Hao, D. Elsworth, H. Zhang, Z. Hu, and G. Cui. 2023. Modes of multi-mechanistic gas diffusion in shale matrix at varied effective stresses: Observations and analysis. Petroleum Science 20 (5):2908–2920. doi:10.1016/j.petsci.2023.03.016.
  • Cui, X., R. M. Bustin, and G. Dipple. 2004. Selective transport of CO2, CH4, and N2 in coals: Insights from modeling of experimental gas adsorption data. Fuel 83 (3):293–303. doi:10.1016/j.fuel.2003.09.001.
  • Dong, J., Y. Cheng, K. Jin, H. Zhang, Q. Liu, J. Jiang, and B. Hu. 2017. Effects of diffusion and suction negative pressure on coalbed methane extraction and a new measure to increase the methane utilization rate. Fuel 197:70–81. doi:10.1016/j.fuel.2017.02.006.
  • Foroozesh, J., A. I. M. Abdalla, D. Zivar, and J. Douraghinejad. 2021. Stress-dependent fluid dynamics of shale gas reservoirs: A pore network modeling approach. Journal of Natural Gas Science & Engineering 95:104243. doi:10.1016/j.jngse.2021.104243.
  • Gruszkiewicz, M. S., M. T. Naney, J. G. Blencoe, D. R. Cole, J. C. Pashin, and R. E. Carroll. 2009. Adsorption kinetics of CO2, CH4, and their equimolar mixture on coal from the Black Warrior Basin, West-Central Alabama. International Journal of Coal Geology 77 (1–2):23–33. doi:10.1016/j.coal.2008.09.005.
  • Janssens-Maenhout, G., M. Crippa, D. Guizzardi, M. Muntean, E. Schaaf, F. Dentener, P. Bergamaschi, V. Pagliari, J. G. J. Olivier, J. A. H. W. Peters, et al. 2019. EDGAR v4.3.2 global atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth System Science Data 11 (3):959–1002. doi:10.5194/essd-11-959-2019.
  • Jasinge, D., P. Ranjith, and S.-K. Choi. 2011. Effects of effective stress changes on permeability of latrobe valley brown coal. Fuel 90 (3):1292–1300. doi:10.1016/j.fuel.2010.10.053.
  • Kim, C., H. Jang, and J. Lee. 2015. Experimental investigation on the characteristics of gas diffusion in shale gas reservoir using porosity and permeability of nanopore scale. Journal of Petroleum Science & Engineering 133:226–37. doi:10.1016/j.petrol.2015.06.008.
  • Linghu, J., F. An, and L. Wang. 2022. Permeability improvement mechanism and application of large-diameter mechanical caving drilling technology for promoting coal gas drainage. Arabian Journal of Geosciences 15 (10):972. doi:10.1007/s12517-022-10201-7.
  • Liu, G., S. Peng, X. Lin, P. Ciais, X. Li, Y. Xi, Z. Lu, J. Chang, M. Saunois, Y. Wu, et al. 2021. Recent slowdown of anthropogenic methane emissions in China driven by stabilized coal production. Environmental Science & Technology Letters 8 (9):739–746. doi:10.1021/acs.estlett.1c00463.
  • Liu, Z., Y. Cheng, L. Wang, B. Pang, W. Li, and J. Jiang. 2020. Experimental investigation of the constant and time-dependent dynamic diffusion coefficient: Implication for CO2 injection method. Fuel 267:117283. doi:10.1016/j.fuel.2020.117283.
  • Liu, Z., X. Lin, Z. Wang, Z. Zhang, R. Chen, L. Wang, and W. Li. 2022. Modeling and experimental study on methane diffusivity in coal mass under in-situ high stress conditions: A better understanding of gas extraction. Fuel 321:124078. doi:10.1016/j.fuel.2022.124078.
  • Lu, S., M. Li, Y. Ma, S. Wang, and W. Zhao. 2022. Permeability changes in mining-damaged coal: A review of mathematical models. Journal of Natural Gas Science & Engineering 106:104739. doi:10.1016/j.jngse.2022.104739.
  • Lu, S., M. Li, Z. Sa, J. Liu, S. Wang, and M. Qu. 2022. Discrimination of gas diffusion state in intact coal and tectonic coal: Model and experiment. Fuel 325:124916. doi:10.1016/j.fuel.2022.124916.
  • Miller, S. M., A. M. Michalak, R. G. Detmers, O. P. Hasekamp, L. M. P. Bruhwiler, and S. Schwietzke. 2019. China’s coal mine methane regulations have not curbed growing emissions. Nature Communications 10 (1):303. doi:10.1038/s41467-018-07891-7.
  • Min, K.-B., J. Rutqvist, C.-F. Tsang, and L. Jing. 2004. Stress-dependent permeability of fractured rock masses: A numerical study. International Journal of Rock Mechanics and Mining Sciences 41 (7):1191–1210. doi:10.1016/j.ijrmms.2004.05.005.
  • Naveen, P., M. Asif, K. Ojha, D. C. Panigrahi, and H. B. Vuthaluru. 2017. Sorption kinetics of CH4 and CO2 diffusion in coal: Theoretical and experimental study. Energy & Fuels 31 (7):6825–6837. doi:10.1021/acs.energyfuels.7b00721.
  • Roy, S., R. Raju, H. F. Chuang, B. A. Cruden, and M. Meyyappan. 2003. Modeling gas flow through microchannels and nanopores. Journal of Applied Physics 93 (8):4870–4879. doi:10.1063/1.1559936.
  • Shen, C., B. Lin, C. Sun, Q. Zhang, and Q. Li. 2015. Analysis of the stress–permeability coupling property in water jet slotting coal and its impact on methane drainage. Journal of Petroleum Science and Engineering 126:231–241. doi:10.1016/j.petrol.2014.11.035.
  • Sheng, J., S. Song, Y. Zhang, R. G. Prinn, and G. Janssens-Maenhout. 2019. Bottom-up estimates of coal mine methane emissions in China: A gridded inventory, emission factors, and trends. Environmental Science & Technology Letters 6 (8):473–478. doi:10.1021/acs.estlett.9b00294.
  • Shi, J., and S. Durucan. 2003. A bidisperse pore diffusion model for methane displacement desorption in coal by CO2 injection. Fuel 82 (10):1219–1229. doi:10.1016/S0016-2361(03)00010-3.
  • Song, H., B. Lin, Z. Zhong, and T. Liu. 2022. Experimental study on methane diffusion kinetics in three typical metamorphic coals. Fuel 311:122601. doi:10.1016/j.fuel.2021.122601.
  • Tan, Y., Z. Pan, J. Liu, J. Kang, F. Zhou, L. D. Connell, and Y. Yang. 2018. Experimental study of impact of anisotropy and heterogeneity on gas flow in coal. Part I: Diffusion and adsorption. Fuel 232:444–453. doi:10.1016/j.fuel.2018.05.173.
  • Wang, H., X. Yang, F. Du, G. Wang, Y. Wang, W. Zhao, and H. Wang. 2021. Calculation of the diffusion coefficient of gas diffusion in coal: The comparison of numerical model and traditional analytical model. Journal of Petroleum Science and Engineering 205:108931. doi:10.1016/j.petrol.2021.108931.
  • Wei, M., C. Liu, Y. Liu, J. Liu, D. Elsworth, O. A. F. A. Tivane, and C. Li. 2022. Long-term effect of desorption-induced matrix shrinkage on the evolution of coal permeability during coalbed methane production. Journal of Petroleum Science and Engineering 208:109378. doi:10.1016/j.petrol.2021.109378.
  • Wei, M., Y. Liu, J. Liu, D. Elsworth, and F. Zhou. 2019. Micro-scale investigation on coupling of gas diffusion and mechanical deformation of shale. Journal of Petroleum Science and Engineering 175:961–970. doi:10.1016/j.petrol.2019.01.039.
  • Wold, M., L. Connell, and S. Choi. 2008. The role of spatial variability in coal seam parameters on gas outburst behaviour during coal mining. International Journal of Coal Geology 75 (1):1–14. doi:10.1016/j.coal.2008.01.006.
  • Xu, C., S. Ma, K. Wang, G. Yang, X. Zhou, A. Zhou, and L. Shu. 2023. Stress and permeability evolution of high-gassy coal seams for repeated mining. Energy 284:128601. doi:10.1016/j.energy.2023.128601.
  • Xu, H., Y. Qin, D. Yang, F. Zhang, F. Wu, and X. Chu. 2022. Modeling of diffusion kinetics during gas adsorption in a coal seam with a dimensionless inversion method. Fuel 326:125068. doi:10.1016/j.fuel.2022.125068.
  • Xue, Y., F. Gao, Y. Gao, H. Cheng, Y. Liu, P. Hou, and T. Teng. 2016. Quantitative evaluation of stress-relief and permeability-increasing effects of overlying coal seams for coal mine methane drainage in Wulan coal mine. Journal of Natural Gas Science & Engineering 32:122–137. doi:10.1016/j.jngse.2016.04.029.
  • Yang, R., T. Ma, H. Xu, W. Liu, Y. Hu, and S. Sang. 2019. A model of fully coupled two-phase flow and coal deformation under dynamic diffusion for coalbed methane extraction. Journal of Natural Gas Science & Engineering 72:103010. doi:10.1016/j.jngse.2019.103010.
  • Yang, Y., and S. Liu. 2019. Estimation and modeling of pressure-dependent gas diffusion coefficient for coal: A fractal theory-based approach. Fuel 253:588–606. doi:10.1016/j.fuel.2019.05.009.
  • Yin, W., X. Miao, J. Zhang, and S. Zhong. 2017. Mechanical analysis of effective pressure relief protection range of upper protective seam mining. International Journal of Mining Science and Technology 27 (3):537–543. doi:10.1016/j.ijmst.2017.03.021.
  • Yuan, Y., N. Gholizadeh Doonechaly, and S. Rahman. 2016. An analytical model of apparent gas permeability for tight porous media. Transport in Porous Media 111 (1):193–214. doi:10.1007/s11242-015-0589-3.
  • Zhang, K., Y. Cheng, L. Wang, J. Dong, C. Hao, and J. Jiang. 2020. Pore morphology characterization and its effect on methane desorption in water-containing coal: An exploratory study on the mechanism of gas migration in water-injected coal seam. Journal of Natural Gas Science & Engineering 75:103152. doi:10.1016/j.jngse.2020.103152.
  • Zhang, X., Z. Zhu, G. Wen, L. Lang, and M. Wang. 2021. Study on gas desorption and diffusion kinetic behavior in coal matrix using a modified shrinking core model. Journal of Petroleum Science and Engineering 204:108701. doi:10.1016/j.petrol.2021.108701.
  • Zhao, W., K. Wang, Y. Cheng, S. Liu, and L. Fan. 2020. Evolution of gas transport pattern with the variation of coal particle size: Kinetic model and experiments. Powder Technology 367:336–46. doi:10.1016/j.powtec.2020.03.061.
  • Zhong, Y., J. She, H. Zhang, E. Kuru, B. Yang, and J. Kuang. 2019. Experimental and numerical analyses of apparent gas diffusion coefficient in gas shales. Fuel 258:116123. doi:10.1016/j.fuel.2019.116123.
  • Zimmerman, R. W., and G. S. Bodvarsson. 1996. Hydraulic conductivity of rock fractures. Transport in Porous Media 23 (1):1–30. doi:10.1007/BF00145263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.