52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficiency study of low calorific value high momentum turbulent jet combustion flame

, , ORCID Icon, , &
Pages 1843-1857 | Received 25 Oct 2023, Accepted 05 Jan 2024, Published online: 21 Jan 2024

References

  • Agerton, M., B. Gilbert, and G. Upton. 2023. The economics of natural gas flaring and methane emissions in US shale: An agenda for research and policy. Review of Environmental Economics and Policy 17 (2):251–73. doi:10.1086/725004.
  • Aghili, A. 2021. Representation and evaluation of the Arrhenius and general temperature integrals by special functions. Thermochimica Acta 705:179034. doi:10.1016/j.tca.2021.179034.
  • An, J., G. He, F. Qin, X. Wei, and B. Liu. 2019. Dynamic adaptive chemistry with mechanisms tabulation and In Situ Adaptive Tabulation (ISAT) for computationally efficient modeling of turbulent combustion. Combustion & Flame 206:467–475. doi:10.1016/j.combustflame.2019.05.016.
  • Asadi, J., E. Yazdani, Y. Dehaghani, and P. Kazempoor. 2021. Technical evaluation and optimization of a flare gas recovery system for improving energy efficiency and reducing emissions. Energy Conversion and Management 236:114076. doi:10.1016/j.enconman.2021.114076.
  • Bandara, J., M. Narayana, and C. Bayer. 2023. Computational investigation of NOx emission in biogas combustion. Environmental Science and Pollution Research 30 (38):89548–58. doi:10.1007/s11356-023-28607-5.
  • Barlow, R., and J. Frank. 1998. Effects of turbulence on species mass fractions in methane/air jet flames. Symposium (International) on Combustion 27 (1):1087–95. doi:10.1016/S0082-0784(98)80510-9.
  • Behjat, Y., M. Irani, J. Ahari, and M. Aghatabar. 2023. Analysis of combustion characteristics and investigation of the cause of thermal stress in the gas refinery flare, using CFD technique1. Journal Petroleum Resources. doi:10.22078/PR.2023.5114.3269.
  • Bello, O., M. Zamani, E. Abbasi-Atibeh, L. Kostiuk, and J. Olfert. 2021. Comparison of emissions from steam-and water-assisted lab-scale flames. Fuel 302:121107. doi:10.1016/j.fuel.2021.121107.
  • Castiñeira, D., and T. Edgar. 2008. CFD for simulation of crosswind on the efficiency of high momentum jet turbulent combustion flames. Journal of Environmental Engineering 134 (7):561–71. doi:10.1061/(ASCE)0733-9372(2008)134:7(561).
  • Cheng, L., N. Barleon, B. Cuenot, O. Vermorel, and A. Bourdon. 2022. Plasma assisted combustion of methane-air mixtures: Validation and reduction. Combustion & Flame 240:111990. doi:10.1016/j.combustflame.2022.111990.
  • Duren, R., and D. Gordon. 2022. Tackling unlit and inefficient gas flaring. Science 377 (6614):1486–1487. doi:10.1126/science.ade2315.
  • Ertesvåg, I. 2020. Analysis of some recently proposed modifications to the eddy dissipation concept (EDC). Combustion Science and Technology 192 (6):1108–36. doi:10.1080/00102202.2019.1611565.
  • Fallah, T., J. Belghaieb, and N. Hajji. 2023. Analysis and simulation of flare gas recovery in oil and gas producing company. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (4):9827–33. doi:10.1080/15567036.2019.1680772.
  • He, D., Y. Yu, H. Ma, H. Liang, and C. Wang. 2022. Extensive discussions of the eddy dissipation concept constants and numerical simulations of the sandia flame d. Applied Sciences 12 (18):9162. doi:10.3390/app12189162.
  • Ibañez-Gómez, L., S. Albarracín-Quintero, S. Céspedes-Zuluaga, E. Montes-Páez, O. Junior, J. Carmo, J. Ribeiro, M. Moreira, A. Siqueira, and C. Guerrero-Martin. 2022. Process optimization of the flaring gas for field applications. Energies 15 (20):7655. doi:10.3390/en15207655.
  • Kabir, S., M. Taleb-Berrouane, and Y. Papadopoulos. 2023. Dynamic reliability assessment of flare systems by combining fault tree analysis and Bayesian networks. Energy Sources Part A 45 (2):4305–22. doi:10.1080/15567036.2019.1670287.
  • Maaroof, A., J. Smith, and M. Zangana. 2023. Design and simulation of a utility oilfield flare in Iraq/Kurdistan region using CFD and API-521 methodology. Heliyon 9 (8):e18581. doi:10.1016/j.heliyon.2023.e18581.
  • Mansoor, R., and M. Tahir. 2021. Recent developments in natural gas flaring reduction and reformation to energy-efficient fuels: A review. Energy & Fuels 35 (5):3675–3714. doi:10.1021/acs.energyfuels.0c04269.
  • Mousavi, S. M., K. Lari, G. Salehi, and M. Azad. 2020. Technical, economic, and environmental assessment of flare gas recovery system: A case study. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2020.1737597.
  • Surapaneni, A., and D. Mira. 2023. Assessment of dynamic adaptive chemistry with tabulated reactions for the simulation of unsteady multiregime combustion phenomena. Combustion & Flame 251:112715. doi:10.1016/j.combustflame.2023.112715.
  • Xiao, C., M. Omidi, A. Surendar, A. Alizadeh, D. Bokov, B. Bin, and D. Toghraie. 2022. Simulation of combustion flow of methane gas in a premixed low-swirl Burner using a partially premixed combustion model. Journal of Thermal Science 31 (5):1663–81. doi:10.1007/s11630-022-1611-z.
  • Zamani, M., E. Abbasi-Atibeh, S. Mobaseri, H. Ahsan, A. Ahsan, J. Olfert, and L. Kostiuk. 2021. An experimental study on the carbon conversion efficiency and emission indices of air and steam co-flow diffusion jet flames. Fuel 287:119534. doi:10.1016/j.fuel.2020.119534.
  • Zhou, N., W. Wang, G. Zhang, Y. Zong, H. Zhao, and X. Yuan. 2018. Effect of obstacles on flame acceleration of propane-air explosion. Explosion & Shock Waves 38 (5):1106–14. doi:10.11883/bzycj-2017-0109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.