88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pilot scale production of biodiesel from Azolla oil via heterogeneous catalysis and diesel engine analysis: kinetic and techno-economic analysis considerations

, , , ORCID Icon & ORCID Icon
Pages 2377-2404 | Received 11 May 2023, Accepted 05 Jan 2024, Published online: 23 Jan 2024

References

  • Abdo, S. M., G. I. El Diwani, K. M. El-Khatib, S. A. Abo El-Enin, M. I. El-Galad, H. S.Basily, and G. H. Ali. 2020. Primitive techno-economic study of bio-diesel and bio-active compound production from microalgae. Bulletin of the National Research Centre 44(1). doi:10.1186/s42269-020-00383-z.
  • Abed, K. A., M. S. Gad, A. K. El Morsi, M. M. Sayed, and S. A. Elyazeed. 2019. Effect of biodiesel fuels on diesel engine emissions. Egyptian Journal of Petroleum 28 (2):183–188. doi:10.1016/j.ejpe.2019.03.001.
  • Albuquerque, A. D., L. Danielski, and L. Stragevitch. 2016. Techno-Economic Assessment of an Alternative Process for Biodiesel Production from Feedstock Containing High Levels of Free Fatty AcidsTechno-Economic Assessment of an Alternative Process for Biodiesel Production from Feedstock Containing High Levels of Free Fatty Acids. Energy Fuels 30(11): 9409–9418. doi:10.1021/acs.energyfuels.6b0145310.1021/acs.energyfuels.6b01453.s001
  • Alloune, R., M. Balistrou, S. Awad, K. Loubar, and M. Tazerout. 2018. Performance, combustion and exhaust emissions characteristics investigation using Citrullus colocynthis L. biodiesel in DI diesel engine. Journal of the Energy Institute 91 (3):434–44. doi:10.1016/j.joei.2017.01.009.
  • Al-Sakkari E. G., M. G. Mohammed, A. A. Elozeiri, O. M. Abdeldayem, M. M. Habashy, E. S. Ong, E. R. Rene, I. Ismail, and I. Ashour. 2020. Comparative Technoeconomic Analysis of Using Waste and Virgin Cooking Oils for Biodiesel Productiondatasheet1.docx. Frontiers in Energy Research 8. doi:10.3389/fenrg.2020.58335710.3389/fenrg.2020.583357.s001.
  • Alsultan, A. G., N. Asikin-Mijan, Z. Ibrahim, R. Yunus, S. Z. Razali, N. Mansir, A. Islam, S. Seenivasagam, and Y. H. Taufiq-Yap. 2021. A short review on catalyst, feedstock, modernised process, current state and challenges on biodiesel production. Catalysts 11 (11):1–36. doi:10.3390/catal11111261.
  • Arumugam, A., K. Gopinath, P. Anuse, B. Shwetha, and V. Ponnusami. 2019. Kinetic modelling and techno-economic analysis of biodiesel production from Calophyllum inophyllum oil. Biomass Conversion and Biorefinery 9(2): 363–378. doi:10.1007/s13399-019-00377-6.
  • Ashok, B., A. K. Jeevanantham, K. Nanthagopal, B. Saravanan, M. S. Kumar, A. Johny, A. Mohan, M. U. Kaisan, and S. Abubakar. 2019. An experimental analysis on the effect of n-pentanol- calophyllum inophyllum biodiesel binary blends in CI engine characteristcis. Energy 173:290–305. doi:10.1016/j.energy.2019.02.092.
  • Awogbemi, O., F. Inambao, and E. I. Onuh. 2020. Modification and characterization of chicken eggshell for possible catalytic applications. Heliyon 6 (10):e05283. doi:10.1016/j.heliyon.2020.e05283.
  • Bohlouli, A., and L. Mahdavian. 2019. Catalysts used in biodiesel production: A review catalysts used in biodiesel production: A review. Biofuels 1–14.
  • Buyukkaya, E. 2010. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 89 (10):3099–105. doi:10.1016/j.fuel.2010.05.034.
  • Cho, H. J., J. Kim, H. Cho, and Y. Yeo. 2012. Techno-Economic Study of a Biodiesel Production from Palm Fatty Acid Distillate. Industrial & Engineering Chemistry Research 121227123655001. doi:10.1021/ie301651b.
  • Correia, L. M., J. A. Cecilia, E. Rodríguez-Castellón, C. L. Cavalcante, and R. S. Vieira. 2017. Relevance of the physicochemical properties of Calcined Quail Eggshell (CaO) as a catalyst for biodiesel production. Journal of Chemistry 2017:1–12. doi:10.1155/2017/5679512.
  • Das, M., M. Sarkar, A. Datta, and A. K. Santra. 2018. An experimental study on the combustion, performance and emission characteristics of a diesel engine fuelled with diesel-castor oil biodiesel blends. Renewable Energy 119:174–84. doi:10.1016/j.renene.2017.12.014.
  • Dhana Raju, V., P. S. Kishore, K. Nanthagopal, and B. Ashok. 2018. An experimental study on the effect of nanoparticles with novel tamarind seed methyl ester for diesel engine applications. Energy Conversion and Management 164 (November 2017):655–66. doi:10.1016/j.enconman.2018.03.032.
  • Dougher, M., L. Soh, and A. M. Bala. 2023. Techno-economic analysis of interesterification for biodiesel production. Energy and Fuels 37 (4):2912–25. doi:10.1021/acs.energyfuels.2c04029.
  • Durai, S., S. K. Pandian, and K. Balamurugan. 2011. Changes in Caenorhabditis elegans exposed to Vibrio parahaemolyticus. Journal of Microbiology and Biotechnology 21 (10):1026–35. doi:10.4014/jmb.1102.02006.
  • Gebremariam, S., and J. Marchetti. 2018. Biodiesel production through sulfuric acid catalyzed transesterification of acidic oil: Techno economic feasibility of different process alternatives. Energy Conversion and Management 174:639–648. doi:10.1016/j.enconman.2018.08.078.
  • Gebremariam, S., and J. Marchetti. (2018). Techno-economic feasibility of producing biodiesel from acidic oil using sulfuric acid and calcium oxide as catalysts. Energy Conversion and Management 171:1712–1720. doi:10.1016/j.enconman.2018.06.105.
  • Haas, M. J., A. J. McAloon, W. C. Yee, and T. A. Foglia. 2006. A process model to estimate biodiesel production costs. Bioresource Technology 97(4): 671–678. doi:10.1016/j.biortech.2005.03.039.
  • Hariharan, N., V. Senthil, M. Krishnamoorthi, and S. V. Karthic. 2020. Application of artificial neural network and response surface methodology for predicting and optimizing dual-fuel CI engine characteristics using hydrogen and bio fuel with water injection. Fuel 270 (March):117576. doi:10.1016/j.fuel.2020.117576.
  • Hasan, M. M., and M. M. Rahman. 2017. Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renewable and Sustainable Energy Reviews 74 (March):938–48. doi:10.1016/j.rser.2017.03.045.
  • Hazrat, M. A., M. G. Rasul, M. M. K. Khan, N. Ashwath, A. S. Silitonga, I. M. R. Fattah, and T. M. I. Mahlia. 2022. Kinetic modelling of Esterification and transesterification processes for biodiesel production utilising waste-based resource. Catalysts 12 (11):1472. doi:10.3390/catal12111472.
  • Hong, Z., J. Chu, L. L. Zhang, and N. Wang. 2023. Recycling channel selection for a manufacturer involving consumers’ green-return behavior. IEEE Transactions on Engineering Management 1–16. doi:10.1109/TEM.2023.3300512.
  • Hosseini, S. H., A. Taghizadeh-Alisaraei, B. Ghobadian, and A. Abbaszadeh-Mayvan. 2020. Artificial neural network modeling of performance, emission, and vibration of a CI engine using alumina nano-catalyst added to diesel-biodiesel blends. Renewable Energy 149:951–61. doi:10.1016/j.renene.2019.10.080.
  • Jin, H., P.Kolar, S. Peretti, J. Osborne, and J. Cheng. 2017. Kinetics and Mechanism of NaOH-Impregnated Calcined Oyster Shell-Catalyzed Transesterification of Soybean Oil. Energies 10(11): 1920. doi:10.3390/en10111920.
  • Krishnakumar, U., and V. Sivasubramanian. 2017. Kinetic study of preparation of biodiesel from crude rubber seed oil over a modified heterogeneous catalyst. Indian Journal of Chemical Technology 24:430–34.
  • Lam, M. K., K. T. Lee, and A. R. Mohamed. 2010. Homogeneous, heterogeneous and enzymatic catalysis for transesteri fi cation of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances 28 (4):500–18. doi:10.1016/j.biotechadv.2010.03.002.
  • Lee J., B. Lee, Y. S. Ok, and H. Lim. 2020. Preliminary techno-economic analysis of biodiesel production over solid-biochar. Bioresource Technology 306:123086. doi:10.1016/j.biortech.2020.123086.
  • Likozar, B., and J. Levec. 2014. Effect of process conditions on equilibrium, reaction kinetics and mass transfer for triglyceride transesterification to biodiesel: Experimental and modeling based on fatty acid composition. Fuel Processing Technology 122:30–41. doi:10.1016/j.fuproc.2014.01.017.
  • Liu, Y., X. Yang, A. Adamu, and Z. Zhu. 2021. Economic evaluation and production process simulation of biodiesel production from waste cooking oil. Current Research in Green and Sustainable Chemistry 4 (February):100091. doi:10.1016/j.crgsc.2021.100091.
  • Maçaira, J., A. Santana, A. Costa, E. Ramirez, and M. A. Larrayoz. 2014. Process intensification using CO2 as cosolvent under supercritical conditions applied to the design of biodiesel production. Industrial and Engineering Chemistry Research 53 (10):3985–95. doi:10.1021/ie402657e.
  • Malode, S. J., S. A. M. Gaddi, P. J. Kamble, A. A. Nalwad, U. M. Muddapur, and N. P. Shetti. 2022. Recent evolutionary trends in the production of biofuels. Materials Science for Energy Technologies 5:262–77. doi:10.1016/j.mset.2022.04.001.
  • Marchetti, J. M., V. U. Miguel, and A. F. Errazu. 2008. Techno-economic study of different alternatives for biodiesel production. Fuel Processing Technology 89 (8):740–48. doi:10.1016/j.fuproc.2008.01.007.
  • Mekonnen, K. D., and Z. B. Sendekie. 2021. NaOH-catalyzed methanolysis optimization of biodiesel synthesis from desert date seed kernel oil. American Chemical Society Omega 6 (37):24082–91. doi:10.1021/acsomega.1c03546.
  • Miranda, A. F., Z. Liu, S. Rochfort, and A. Mouradov. 2018. Lipid production in aquatic plant Azolla at vegetative and reproductive stages and in response to abiotic stress. Plant Physiology and Biochemistry 124 (January):117–25. doi:10.1016/j.plaphy.2018.01.012.
  • Mohiddin, M. N. B., Y. H. Tan, Y. X. Seow, J. Kansedo, N. M. Mubarak, M. O. Abdullah, Y. S. Chan, and M. Khalid. 2021. Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. Journal of Industrial and Engineering Chemistry 98:60–81. doi:10.1016/j.jiec.2021.03.036.
  • Musa, I. A. 2016. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum 25 (1):21–31. doi:10.1016/j.ejpe.2015.06.007.
  • Naveenkumar, R., and G. Baskar. 2020. Optimization and techno-economic analysis of biodiesel production from Calophyllum inophyllum oil using heterogeneous nanocatalyst. Bioresource Technology 315:123852. doi:10.1016/j.biortech.2020.123852.
  • Pasha, M. K., L. Dai, D. Liu, M. Guo, and W. Du. 2021. An overview to process design, simulation and sustainability evaluation of biodiesel production. Biotechnology for Biofuels 14 (1):1–23. doi:10.1186/s13068-021-01977-z.
  • Poddar, T., A. Jagannath, and A. Almansoori. 2017. Use of reactive distillation in biodiesel production: A simulation-based comparison of energy requirements and profitability indicators. Applied Energy 185:985–997. doi:10.1016/j.apenergy.2015.12.054.
  • Prabakaran, S., T. Mohanraj, and A. Arumugam. 2021. Azolla pinnata methyl ester production and process optimization using a novel heterogeneous catalyst. Renewable Energy 180:353–71. doi:10.1016/j.renene.2021.08.073.
  • Ramalingam, S., and S. Rajendran. 2019. Assessment of performance, combustion, and emission behavior of novel annona biodiesel-operated diesel engine. Advances in Eco-Fuels for a Sustainable Environment 14:391–405.
  • Riaz, T., R. Zeeshan, F. Zarif, K. Ilyas, N. Muhammad, S. Z. Safi, A. Rahim, S. A. A. Rizvi, and I. U. Rehman. 2018. FTIR analysis of natural and synthetic collagen. Applied Spectroscopy Reviews 53 (9):703–46. doi:10.1080/05704928.2018.1426595.
  • Ruangrit, K., S. Chaipoot, R. Phongphisutthinant, K. Duangjan, K. Phinyo, I. Jeerapan, J. Pekkoh, and S. Srinuanpan. 2021. A successful biorefinery approach of macroalgal biomass as a promising sustainable source to produce bioactive nutraceutical and biodiesel. Biomass Conversion and Biorefinery 13 (2):1089–99. doi:10.1007/s13399-021-01310-6.
  • Sahani, S., T. Roy, and Y. Chandra Sharma. 2019. Clean and efficient production of biodiesel using barium cerate as a heterogeneous catalyst for the biodiesel production; kinetics and thermodynamic study. Journal of Cleaner Production 237:117699. doi:10.1016/j.jclepro.2019.117699.
  • Salehi, A., A. Karbassi, B. Ghobadian, A. Ghasemi, and A. Doustgani. 2019. Simulation process of biodiesel production plant. Environment Program and Sustain Energy 38(6): doi:10.1002/ep.13264.
  • Şanli, B. G. 2019. Energetic and exergetic performance of a diesel engine fueled with diesel and microalgae biodiesel. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 41 (20):2519–33. doi:10.1080/15567036.2019.1587097.
  • Santana, G., P. Martins, N. de Lima da Silva, C. Batistella, R. Maciel Filho, and M. Wolf Maciel. 2010. Simulation and cost estimate for biodiesel production using castor oil. Chemical Engineering Research and Design 88(5–6): 626–632. doi:10.1016/j.cherd.2009.09.015.
  • Sebayang, A. H., F. Kusumo, J. Milano, A. H. Shamsuddin, A. S. Silitonga, F. Ideris, J. Siswantoro, I. Veza, M. Mofijur, and S. Reen Chia. 2023. Optimization of biodiesel production from rice bran oil by ultrasound and infrared radiation using ANN-GWO. Fuel 346 (December 2022):128404. doi:10.1016/j.fuel.2023.128404.
  • Shrivastava, P., T. N. Verma, and A. Pugazhendhi. 2019. An experimental evaluation of engine performance and emisssion characteristics of CI engine operated with Roselle and Karanja biodiesel. Fuel 254:115652. doi:10.1016/j.fuel.2019.115652.
  • Silitonga, A. S., H. H. Masjuki, H. C. Ong, F. Kusumo, T. M. I. Mahlia, and A. H. Bahar. 2016. Pilot-scale production and the physicochemical properties of palm and calophyllum inophyllum biodiesels and their blends. Journal of Cleaner Production 126:654–66. doi:10.1016/j.jclepro.2016.03.057.
  • Singh, Y., P. Singh, A. Sharma, P. Choudhary, A. Singla, and N. K. Singh. 2018. Optimization of wear and friction characteristics of phyllanthus emblica seed oil based lubricant using response surface methodology. Egyptian Journal of Petroleum 27 (4):1145–55. doi:10.1016/j.ejpe.2018.04.001.
  • Slinn, M., and K. Kendall. 2009. Developing the reaction kinetics for a biodiesel reactor. Bioresource Technology 100 (7):2324–27. doi:10.1016/j.biortech.2008.08.044.
  • Sotoft, L. F., B. Rong, K. V. Christensen, and B. Norddahl. 2010. Process simulation and economical evaluation of enzymatic biodiesel production plant. Bioresource Technology 101(14): 5266–5274. doi:10.1016/j.biortech.2010.01.130.
  • Tan, D., Y. Meng, J. Tian, C. Zhang, Z. Zhang, G. Yang, S. Cui, J. Hu, and Z. Zhao. 2023. Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies. Energy 269:126785. doi:10.1016/j.energy.2023.126785.
  • Tasić, M. B., O. S. Stamenković, and V. B. Veljković. 2014. Cost analysis of simulated base-catalyzed biodiesel production processes. Energy Conversion and Management 84:405–413. doi:10.1016/j.enconman.2014.04.044.
  • Thanikodi, S., J. Milano, A. H. Sebayang, A. H. Shamsuddin, S. M. Rangappa, S. Siengchin, A. S. Silitonga, A. H. Bahar, H. Ibrahim, and S. M. Benu. 2023. Enhancing the engine performance using multi fruits peel (exocarp) ash with nanoparticles in biodiesel production. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (1):2122–43. doi:10.1080/15567036.2023.2185317.
  • Védrine, J. C. 2019. Recent developments and prospectives of acid-base and redox catalytic processes by metal oxides. Applied Catalysis A: General 575:170–79. doi:10.1016/j.apcata.2019.02.012.
  • Venu, H., V. D. Raju, S. Lingesan, M. Elahi, and M. Soudagar. 2021. Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in asingle cylinder diesel engine: Performance, combustion and emission characteristics. Energy 215:119091. doi:10.1016/j.energy.2020.119091.
  • Wu, G., J. C. Ge, and N. J. Choi. 2020. A comprehensive review of the application characteristics of biodiesel blends in diesel engines. Applied Sciences (Switzerland) 10 (22):1–31. doi:10.3390/app10228015.
  • Xie, J. J., T. Chen, B. Xing, H. Liu, Q. Xie, H. Li, and Y. Wu. 2016. The thermochemical activity of dolomite occurred in dolomite–palygorskite. Applied Clay Science 119:42–48. doi:10.1016/j.clay.2015.07.014.
  • Yandrapu, V. P., and N. R. Kanidarapu. 2022. Energy, economic, environment assessment and process safety of methylchloride plant using Aspen HYSYS simulation model. Digital Chemical Engineering 3 (January):100019. doi:10.1016/j.dche.2022.100019.
  • Zhang, Y., M. Dubé, D. McLean, and M. Kates. 2003. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technology 90(3): 229–240. doi:10.1016/S0960-8524(03)00150-0.
  • Zhang, H., H. Li, C. C. Xu, and S. Yang. 2019. Heterogeneously chemo/Enzyme-functionalized porous polymeric Catalysts of high-performance for efficient biodiesel production. ACS Catalysis 9 (12):10990–1029. doi:10.1021/acscatal.9b02748.
  • Zhou, C., P. Yrjas, and K. Engvall. 2021. Reaction mechanisms for H2O-enhanced dolomite calcination at high pressure. Fuel Processing Technology 217 (March):106830. doi:10.1016/j.fuproc.2021.106830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.