43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unveiling the potential of concentric tubular solar stills (CTSS) through comprehensive thermodynamic modeling and analysis

ORCID Icon & ORCID Icon
Pages 2318-2340 | Received 10 Jul 2023, Accepted 06 Jan 2024, Published online: 23 Jan 2024

References

  • Ahsan, A., T. Fukuhara, and P. Student. n.d. Evaporativity and productivity of a new tubular solar still. doi:10.1007/978-3-540-89465-0_60.
  • Aly, W. I. A., M. A. Tolba, and M. Abdelmagied. 2023. Experimental investigation and performance evaluation of an oval tubular solar still with phase change material. Applied Thermal Engineering 221:221. doi:10.1016/j.applthermaleng.2022.119628.
  • Arani, R. P., R. Sathyamurthy, A. Chamkha, A. E. Kabeel, M. Deverajan, K. Kamalakannan, M. Balasubramanian, M. Manokar, F. Essa, and A. Saravanan. 2021. Effect of fins and silicon dioxide nanoparticle black paint on the absorber plate for augmenting yield from tubular solar still. Environmental Science and Pollution Research 28 (26):35102–12. doi:10.1007/s11356-021-13126-y/Published.
  • Arunkumar, T., R. Jayaprakash, A. Ahsan, D. Denkenberger, and M. S. Okundamiya. 2012. Effect of water and air flow on concentric tubular solar water desalting system. Applied Energy 103:109–15. doi:10.1016/j.apenergy.2012.09.014.
  • Arunkumar, T., R. Velraj, D. C. Denkenberger, R. Sathyamurthy, K. V. Kumar, and A. Ahsan. 2016. Productivity enhancements of compound parabolic concentrator tubular solar stills. Renewable Energy 88:391–400. doi:10.1016/j.renene.2015.11.051.
  • Attia, M. E. H., A. E. Kabeel, A. Abdo, M. Abdelgaied, A. Bellila, and A. S. Abdullah. 2022. Optimal configurations of hemispherical solar distillers using the higher conductivity extended hollow cylindrical fins filled with latent heat storage materials. Journal of Energy Storage 50:104706. doi:10.1016/j.est.2022.104706.
  • Dunkle, R. V. 1961. Solar water distillation: The roof of type still and multiple effect diffusion still, international developments in heat transfer. In ASME, proc. International heat transfer, part V, 895. University of Colorado.
  • El-Sebaii, A. A., A. A. Al-Ghamdi, F. S. Al-Hazmi, and A. S. andFaidah. 2009. Thermal performance of a single basin solar still with PCM as a storage medium. Applied Energy 86 (7–8):1187–95. doi:10.1016/j.apenergy.2008.10.014.
  • Elshamy, S. M., and E. M. S. El-Said. 2018. Comparative study based on thermal, exergetic and economic analyses of a tubular solar still with semi-circular corrugated absorber. Journal of Cleaner Production 195:328–39. doi:10.1016/j.jclepro.2018.05.243.
  • Essa, F. A., A. S. Abdullah, W. H. Alawee, A. Alarjani, U. F. Alqsair, S. Shanmugan, Z. M. Omara, and M. M. Younes. 2022. Experimental enhancement of tubular solar still performance using rotating cylinder, nanoparticles’ coating, parabolic solar concentrator, and phase change material. Case Studies in Thermal Engineering 29. doi:10.1016/j.csite.2021.101705.
  • Hollands, K. G. T., and G. D. Raithby. 1975. A General Method of Obtaining Approximate Solutions to laminar and Turbulent Free Convection Problems. In Advances in Heat Transfer, by T. F. Irvine and J. P. Harnett, Vol. 11, 265–315. New York: Academic Press.
  • Member Kh Md Shafiul Islam, F., T. Fukuhara, and F. Asano n.d. Mass transfer in tubular solar still.
  • Murugavel, K. K., S. Sivakumar, J. R. Ahamed, K. K. S. K. Chockalingam, and K. Srithar. 2010. Single basin double slope solar still with minimum basin depth and energy storing materials. Applied Energy 87 (2):514–23. doi:10.1016/j.apenergy.2009.07.023.
  • Nagrale, P., and S. K. Dewangan. 2022. Mathematical modelling and analysis of thermodynamic performance parameters of tubular solar still. Energy sources, part A: Recovery. Utilization, and Environmental Effects 44 (3):6129–52. doi:10.1080/15567036.2022.2095464.
  • Omara, Z. M., W. H. Alawee, S. A. Mohammed, H. A. Dhahad, A. S. Abdullah, and F. A. Essa. 2022. Experimental study on the performance of pyramid solar still with novel convex and dish absorbers and wick materials. Journal of Cleaner Production 373:133835. doi:10.1016/j.jclepro.2022.133835.
  • Omara, Z. M., A. E. Kabeel, and A. S. Abdullah. 2017. A review of solar still performance with reflectors. In Renewable and sustainable energy reviews, Vol. 68, 638–49. Elsevier Ltd. doi:10.1016/j.rser.2016.10.031.
  • Pal, S., and S. K. Dewangan. 2023. Thermodynamic modeling and performance analysis of newly conceptualized double basin concentric tubular solar still. International Journal on Interactive Design & Manufacturing (IjideM). doi:10.1007/s12008-023-01393-7.
  • Sambare, R. K., S. K. Dewangan, P. K. Gupta, and S. Joshi. 2022a. Augmenting the productivity of tubular solar still using low-cost energy storage materials. Environmental Science and Pollution Research 29 (52):78739–56. doi:10.1007/s11356-022-21324-5.
  • Sambare, R. K., S. K. Dewangan, P. K. Gupta, and S. Joshi. 2022b. Energy, exergy and economic analyses of tubular solar still with various transparent cover materials. Process Safety and Environmental Protection 168:1101–08. doi:10.1016/j.psep.2022.10.064.
  • Sambare, R. K., S. K. Dewangan, P. K. Gupta, and S. S. Joshi. 2021. Exergy and thermo-economic analyses of various tubular solar still configurations for improved performance. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 43 (21):2672–91. doi:10.1080/15567036.2021.1887977.
  • Sivakumar, V., E. G. Sundaram, and M. Sakthivel. 2016. Investigation on the effects of heat capacity on the theoretical analysis of single slope passive solar still. Desalination and Water Treatment 57 (20):9190–202. doi:10.1080/19443994.2015.1026284.
  • Thalib, M. M., A. M. Manokar, F. A. Essa, N. Vasimalai, R. Sathyamurthy, and F. P. Garcia Marquez. 2020. Comparative Study of Tubular Solar Stills with phase change material and nano-enhanced phase change material. Energies 13 (15):3989. doi:10.3390/en13153989.
  • Tiwari, A. K., and G. N. Tiwari. 2007. Thermal modelling based on solar fraction and experimental study of the annual and seasonal performance of a single slope passive solar still: The effect of water depths. Desalination 207 (1–3):184–204. doi:10.1016/j.desal.2006.07.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.