49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Regulation of Ni valence state and synergistic effects of supports in the hydrodeoxygenation of lignin-derived vanillin using pseudoboehmite-supported Ni catalysts

, , , , , & show all
Pages 2855-2868 | Received 12 Dec 2023, Accepted 15 Jan 2024, Published online: 02 Feb 2024

References

  • Almeida, C. V., G. Tremiliosi-Filho, K. I. Eguiluz, and G. R. Salazar-Banda. 2020. Improved ethanol electro-oxidation at Ni@ Pd/C and Ni@ PdRh/C core–shell catalysts. Journal of Catalysis 391:175–89. doi:10.1016/j.jcat.2020.08.024.
  • Baviskar, C. V., and P. D. Vaidya. 2017. Steam reforming of model bio-oil compounds 2-butanone, 1-methoxy-2-propanol, ethyl acetate and butyraldehyde over Ni/Al2O3. International Journal of Hydrogen Energy 42 (34):21667–76. doi:10.1016/j.ijhydene.2017.07.063.
  • Braos-Garcıa, P., P. Maireles-Torres, E. Rodrıguez-Castellón, and A. Jiménez-López. 2001. Gas-phase hydrogenation of acetonitrile over nickel supported on alumina-and mixed alumina/gallium oxide-pillared tin phosphate catalysts. Journal of Molecular Catalysis A: Chemical 168 (1–2):279–87. doi:10.1016/S1381-1169(00)00544-6.
  • Dasari, K. K., V. Gumtapure, and S. Dutta. 2020. Upgrading of coconut shell-derived pyrolytic bio-oil by thermal and catalytic deoxygenation. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–10. doi:10.1080/15567036.2019.1711465.
  • Ding, C., J. Wang, Y. Jia, G. Ai, S. Liu, P. Liu, K. Zhang, Y. Han, and X. Ma. 2016. Anti-coking of Yb-promoted Ni/Al2O3 catalyst in partial oxidation of methane. International Journal of Hydrogen Energy 41:10707–18. doi:10.1016/j.ijhydene.2016.04.110.
  • Duan, M., Q. Cheng, M. Wang, and Y. Wang. 2021. In situ hydrodeoxygenation of vanillin over Ni–co–P/HAP with formic acid as a hydrogen source. RSC Advances 11 (18):10996–1003. doi:10.1039/D1RA00979F.
  • Emamdoust, A., V. La Parola, G. Pantaleo, M. L. Testa, S. F. Shayesteh, and A. M. Venezia. 2020. Partial oxidation of methane over SiO2 supported Ni and NiCe catalysts. Journal of Energy Chemistry 47:1–9. doi:10.1016/j.jechem.2019.11.019.
  • Fan, R., C. Chen, M. Han, W. Gong, H. Zhang, Y. Zhang, H. Zhang, and G. Wang. 2018. Highly dispersed copper nanoparticles supported on activated carbon as an efficient catalyst for selective reduction of vanillin. Small 14 (36):1801953. doi:10.1002/smll.201801953.
  • Feng, J., Z. Yang, C. Y. Hse, Q. Su, K. Wang, J. Jiang, and J. Xu. 2017. In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading. Renewable Energy 105:140–48. doi:10.1016/j.renene.2016.12.054.
  • Gao, J., Y. Cao, G. Luo, J. Fan, J. H. Clark, and S. Zhang. 2022. High-efficiency catalytic hydrodeoxygenation of lignin-derived vanillin with nickel-supported metal phosphate catalysts. Chem Eng J 448:137723. doi:10.1016/j.cej.2022.137723.
  • Guo, X., G. Gao, J. Remón, Y. Ma, Z. Jiang, B. Shi, and D. C. Tsang. 2022. Selective hydrogenation of vanillin to vanillyl alcohol over Pd, Pt, and Au catalysts supported on an advanced nitrogen-containing carbon material produced from food waste. Chem Eng J 440 135885. doi:10.1016/j.cej.2022.135885.
  • Han, Q., M. U. Rehman, J. Wang, A. Rykov, O. Y. Gutiérrez, Y. Zhao, S. Wang, X. Ma, and J. A. Lercher. 2019. The synergistic effect between Ni sites and Ni-fe alloy sites on hydrodeoxygenation of lignin-derived phenols. Applied Catalysis B: Environmental 253:348–358. doi:10.1016/j.apcatb.2019.04.065.
  • Han, Y., B. Wen, M. Zhu, and B. Dai. 2018. Lanthanum incorporated in MCM-41 and its application as a support for a stable Ni-based methanation catalyst. Journal of Rare Earths 36 (4):367–73. doi:10.1016/j.jre.2017.07.016.
  • Huang, H., R. Zong, and H. Li. 2020. Synergy effects between oxygen groups and defects in hydrodeoxygenation of biomass over a carbon nanosphere supported Pd catalyst. 2020. ACS Sustainable Chemistry & Engineering 8 (42):15998–6009. doi:10.1021/acssuschemeng.0c06122.
  • Jiang, L., P. Zhou, C. Liao, Z. Zhang, and S. Jin. 2018. Cobalt nanoparticles supported on nitrogen‐doped carbon: An effective non‐noble metal catalyst for the upgrade of biofuels. ChemSuschem 11 (5):959–64. doi:10.1002/cssc.201702078.
  • Liao, Q., M. Shi, Q. Zhang, W. Cheng, P. Ji, X. Fu, H. Lai, R. Fan, J. Sheng, and H. Li. 2022. Gold catalyst anchored to pre-reduced Co3O4 nanorods for the hydrodeoxygenation of vanillin using alcohols as hydrogen donors. ACS Applied Materials & Interfaces 14:3939–48. doi:10.1021/acsami.1c18197.
  • Li, G., and H. Li. 2021. Enhancing activity of Ni2P-based catalysts by a yolk–shell structure and transition metal-doping for catalytic transfer hydrogenation of vanillin. Energy & Fuels 35 (5):4158–68. doi:10.1021/acs.energyfuels.0c03771.
  • Liu, T., Z. Tian, W. Zhang, B. Luo, L. Lei, C. Wang, J. Liu, R. Shu, and Y. Chen. 2023. Selective hydrodeoxygenation of lignin-derived phenols to alkyl cyclohexanols over highly dispersed RuFe bimetallic catalysts. Fuel 339:339 126916. doi:10.1016/j.fuel.2022.126916.
  • Liu, Q., Z. Zhong, F. Gu, X. Wang, X. Lu, H. Li, G. Xu, and F. Su. 2016. CO methanation on ordered mesoporous Ni–cr–al catalysts: Effects of the catalyst structure and Cr promoter on the catalytic properties. Journal of Catalysis 337:337 221–232. doi:10.1016/j.jcat.2016.01.023.
  • Lu, X., X. Zhu, H. Guo, H. Que, D. Wang, D. Liang, T. He, C. Hu, C. Xu, and X. Gu. 2020. Efficient depolymerization of alkaline lignin to phenolic compounds at low temperatures with formic acid over inexpensive Fe–Zn/Al2O3 catalyst. Energy & Fuels 34:7121–30. doi:10.1021/acs.energyfuels.0c00742.
  • Nie, R., H. Yang, H. Zhang, X. Yu, X. Lu, D. Zhou, and Q. Xia. 2017. Mild-temperature hydrodeoxygenation of vanillin over porous nitrogen-doped carbon black supported nickel nanoparticles. Green Chemistry 19:3126–34. doi:10.1039/C7GC00531H.
  • Oyama, S. T., and Y. K. Lee. 2008. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4, 6-DMDBT. Journal of Catalysis 258 (2):393–400. doi:10.1016/j.jcat.2008.06.023.
  • Papageridis, K. N., N. D. Charisiou, S. L. Douvartzides, V. Sebastian, S. J. Hinder, M. A. Baker, S. AlKhoori, K. Polychronopoulou, and M. A. Goula. 2020. Effect of operating parameters on the selective catalytic deoxygenation of palm oil to produce renewable diesel over Ni supported on Al2O3, ZrO2 and SiO2 catalysts. Fuel Processing Technology 209 106547. doi:10.1016/j.fuproc.2020.106547.
  • Pu, J., K. Nishikado, N. Wang, T. T. Nguyen, T. Maki, and E. W. Qian. 2018. Core-shell nickel catalysts for the steam reforming of acetic acid. Applied Catalysis B: Environmental 224:69–79. doi:10.1016/j.apcatb.2017.09.058.
  • Ran, J., L. Alfilfil, J. Li, R. Yangcheng, Z. Liu, Q. Wang, Y. Cui, T. Cao, M. Qiao, K. Yao, et al. 2022. Tailoring interfacial microenvironment of palladium‐zeolite catalysts for the efficient low‐temperature hydrodeoxygenation of vanillin in water. ChemCatchem 14 (14):e202200397. doi:10.1002/cctc.202200397.
  • Rorrer, J. E., A. T. Bell, and F. D. Toste. 2019. Synthesis of biomass‐derived ethers for use as fuels and lubricants. ChemSuschem 12 (13):2835–58. doi:10.1002/cssc.201900535.
  • Saidi, M., and M. Safaripour. 2022. Aqueous phase hydrodeoxygenation of anisole as a pyrolysis lignin-derived bio-oil by ether-functionalized ionic polymer-stabilized Ni-mo nanocatalyst. Sustainable Energy Technologies and Assessments 49:101770. doi:10.1016/j.seta.2021.101770.
  • Shen, K., X. Wang, X. Zou, X. Wang, X. Lu, and W. Ding. 2011. Pre-reforming of liquefied petroleum gas over nickel catalysts supported on magnesium aluminum mixed oxides. International Journal of Hydrogen Energy 36:4908–16. doi:10.1016/j.ijhydene.2011.01.065.
  • Shi, T., H. Li, L. Yao, W. Ji, and C. T. Au. 2012. Ni–Co–Cu supported on pseudoboehmite-derived Al2O3: Highly efficient catalysts for the hydrogenation of organic functional groups. Applied Catalysis A: General 425-426:68–73. doi:10.1016/j.apcata.2012.03.003.
  • Shu, R., H. Jiang, L. Xie, X. Liu, T. Yin, Z. Tian, W. Chao, and Y. Chen. 2023. Efficient hydrodeoxygenation of lignin-derived phenolic compounds by using Ru-based biochar catalyst coupled with silicotungstic acid. Renewable Energy 202:1160–68. doi:10.1016/j.renene.2022.11.092.
  • Tang, P., Y. Chai, J. Feng, Y. Feng, Y. Li, and D. Li. 2014. Highly dispersed Pd catalyst for anthraquinone hydrogenation supported on alumina derived from a pseudoboehmite precursor. Appl Catal A, Gen 469:469 312–319. doi:10.1016/j.apcata.2013.10.008.
  • Tran, Q. K., H. V. Ly, B. Kwon, S. S. Kim, and J. Kim. 2021. Catalytic hydrodeoxygenation of guaiacol as a model compound of woody bio-oil over Fe/AC and Ni/γ-Al2O3 catalysts. Renewable Energy 173:886–895. doi:10.1016/j.renene.2021.03.138.
  • Wang, Y., M. Chen, Z. Yang, T. Liang, S. Liu, Z. Zhou, and X. Li. 2018. Bimetallic Ni-M (M= Co, Cu and Zn) supported on attapulgite as catalysts for hydrogen production from glycerol steam reforming. Applied Catalysis A: General 550:550 214–227. doi:10.1016/j.apcata.2017.11.014.
  • Wang, H., B. Yang, Q. Zhang, and W. Zhu. 2020. Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons. Renewable and Sustainable Energy Reviews 120:120 109612. doi:10.1016/j.rser.2019.109612.
  • Wang, S., L. Yang, T. Zhu, N. Jiang, F. Li, H. Wang, C. Zhang, and H. Song. 2022. Highly efficient hydrogenation of phenol to cyclohexanol over Ni-based catalysts derived from Ni-MOF-74. Reaction Chemistry & Engineering 7 (1):170–80. doi:10.1039/D1RE00302J.
  • Xing, X., L. Liu, Y. Zhang, P. Fu, and Z. Li. 2023. Mild modification of lignin pyrolysis vapors by metal oxide catalysts: A comparative study with molecular sieve catalysts. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (2):5052–62. doi:10.1080/15567036.2023.2207501.
  • Zhang, Z., X. Hu, L. Zhang, Y. Yang, Q. Li, H. Fan, Q. Liu, T. Wei, and C. Z. Li. 2019. Steam reforming of guaiacol over Ni/Al2O3 and Ni/SBA-15: Impacts of support on catalytic behaviors of nickel and properties of coke. Fuel Processing Technology 191:138–51. doi:10.1016/j.fuproc.2019.04.001.
  • Zhang, Q., D. Zhang, Z. Sun, F. Wang, J. Zhang, R. Ma, and W. Yi. 2023. The impact of various catalysts on pyrolysis bio-oil characteristics and catalyst coking behavior of corn stover. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (4):12666–79. doi:10.1080/15567036.2023.2276902.
  • Zhao, C., C. A. Sojdak, W. Myint, and D. Seidel. 2017. Reductive etherification via anion-binding catalysis. Journal of the American Chemical Society 139 (30):10224–27. doi:10.1021/jacs.7b05832.
  • Zheng, L., Z. Li, P. Fu, F. Sun, M. Liu, T. Guo, and Q. Fan. 2022. Development of Mo-modified pseudoboehmite supported Ni catalysts for efficient hydrogen production from formic acid. American Chemical Society Omega 7 (31):27172–84. doi:10.1021/acsomega.2c01742.
  • Zheng, Q., D. Zhang, P. Fu, A. Wang, Y. Sun, Z. Li, and Q. Fan. 2022. Insight into the fast pyrolysis of lignin: Unraveling the role of volatile evolving and char structural evolution. Chemical Engineering Journal 437:135316. doi:10.1016/j.cej.2022.135316.
  • Zhong, Z., B. Luo, C. Lin, T. Yin, Z. Tian, C. Wang, Y. Chen, Y. Wu, and R. Shu. 2023. Ultrafast microfluidic preparation of highly dispersed Ru/TiO2 catalyst for the hydrodeoxygenation of lignin-derived phenolic compounds. Fuel 340:340 127567. doi:10.1016/j.fuel.2023.127567.
  • Zong, R., H. Li, W. Ding, and H. Huang. 2021. Highly dispersed Pd on zeolite/carbon nanocomposites for selective hydrodeoxygenation of biomass-derived molecules under mild conditions. ACS Sustainable Chemistry & Engineering 9 (29):9891–902. doi:10.1021/acssuschemeng.1c02876.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.