66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Research: influence of air classification ratio on low nitrogen performance of natural gas burner

, , &
Pages 2421-2435 | Received 15 Aug 2023, Accepted 16 Jan 2024, Published online: 25 Jan 2024

References

  • Alobaid, F., A. Kuhn, N. Nguyen, B. Johnen, J. Peters, and B. Epple. 2022. Numerical and experimental study of co-combustion of refuse-derived fuels in a circulating fluidized bed during load change. Frontiers in Energy Research 10. doi:10.3389/fenrg.2022.969780.
  • Asai, T., K. Miura, Y. Matsubara, T. Koganezawa, Y. Hirata, A. Hayashi, S. Yoshida, and K. Abe. 2018. Development of a dry low NOx combustor for dual gaseous fuels of natural gas and petroleum gas. Proceedings of the ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, Vol 4A.
  • Belosevic, S., V. Beljanski, I. Tomanovic, N. Crnomarkovic, D. Tucakovic, and T. Zivanovic. 2012. Numerical analysis of NOx control by combustion modifications in pulverized coal utility boiler. Energy & Fuels: An American Chemical Society Journal 26 (1):425–42. doi:10.1021/ef201380z.
  • Bi, D. G., Z. X. Zhang, X. W. Guo, H. Bai, Z. Zhu. 2019. Experimental study on influencing factors of NOx reduction by combining air staging and reagent injection. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–9. doi:10.1080/15567036.2019.1691285.
  • Buschhagen, T., R. M. Gejji, C. Scalo, and C. Slabaugh. 2022. Self-excited instability regimes of a confined turbulent jet flame at elevated pressure. Physics of Fluids 34 (4):046101. doi:10.1063/5.0083293.
  • Cheng, H., J. Wang, F. Jia, and N. Zhao. 2021. Design of gear-type combustion stabilizer under benign control of pulverized coal combustion behavior, energy sources, part A: Recovery. Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2021.1916129.
  • Choi, C. R., and C. N. Kim. 2009. Numerical investigation on the flow, combustion and NOx emission characteristics in a 500 MWe tangentially fired pulverized-coal boiler. Fuel 88 (9):1720–31. doi:10.1016/j.fuel.2009.04.001.
  • Doan, N. A. K., N. Swaminathan, and Y. Minamoto. 2018. DNS of MILD combustion with mixture fraction variations. Combustion & Flame 189 (mar.):173–89. doi:10.1016/j.combustflame.2017.10.030.
  • Elbaz, A. M., H. A. Moneib, K. M. Shebil, and W. L. Roberts. 2019. Low NOx - LPG staged combustion double swirl flames. Renewable Energy 138:303–15. Advance online publication. doi:10.1016/j.renene.2019.01.070.
  • Fang, N., L. Zeng, B. Zhang, Z. Li, H. Wang, and X. Liu. 2019. Numerical simulation of flow and gasification characteristics with different swirl vane angles in a 2000 t/d GSP gasifier. Applied Thermal Engineering 153:791–99. doi:10.1016/j.applthermaleng.2019.03.006.
  • Fan, S., Z. Li, X. Yang, G. Liu, and Z. Chen. 2010. Influence of outer secondary-air vane angle on combustion characteristics and NOx emissions of a down-fired pulverized-coal 300 MWe utility boiler. Fuel 89 (7):1525–33. doi:10.1016/j.fuel.2009.09.014.
  • Gil, S., W. Bialik, and S. Kozłowski. 2021. Generation of nitrogen oxides in submerged arc furnace during the production of ferroalloys. Advances in Thermal Processes and Energy Transformation 4 (3):37–41. doi:10.54570/atpet2021/04/03/0037.
  • Guo, X., J. Fan, H. Bai, Z. Zhang, D. Bi, J. Dong, J. Zhang, Z. Zhu, J. Zhang, and J. Yu. 2019. A numerical investigation of NOx emission at the outlet of a coal-fired chain grate boiler. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–10. doi:10.1080/15567036.2019.1687616.
  • Hai, J., L. Hong, Z. Zhi, M. Peng, Y. Ming, and N. Jian. 2015. Numerical simulation and modification of new low NOx gas burner. Thermal Power Emission 44 (12):107–12.
  • He, L., Y. Fan, J. Bellettre, J. Yue, and L. Luo. 2020. A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renewable & Sustainable Energy Reviews 119:109589. doi:10.1016/j.rser.2019.109589.
  • He, X. Z., Q. M. Tan, Y. H. Wu, and C. F. Wei. 2022. Optimization of marine two-stroke diesel engine based on air intake composition and temperature control. Atmosphere 13 (2):355. doi:10.3390/atmos13020355.
  • Hong, L., Y. Ming, J. Hai, X. Dang, N. Jian, Z. Guang, and Z. Zhi. 2014. Ultra-low nitrogen multi-stage adjustable strong and weak swirl anti-gas burner. CN203628654U.
  • Kawahara, H., K. Furukawa, K. Ogata, E. Mitani, and K. Mitani. 2021. Experimental study on the stabilization mechanism of diffusion flames in a curved impinging spray combustion field in a narrow region. Energies 14 (21):7171. doi:10.3390/en14217171.
  • Kikuchi, K., R. Murai, T. Hori, and F. Akamatsu. 2021. Fundamental study on ammonia Low-NOx combustion using two-stage combustion by Parallel Air Jets. Processes 10 (1):23. doi:10.3390/pr10010023.
  • Li, S., Z. Chen, X. Li, B. Jiang, Z. Li, R. Sun, Q. Zhu, and X. Zhang. 2017. Effect of outer secondary-air vane angle on the flow and combustion characteristics and NOx formation of the swirl burner in a 300-MW low-volatile coal-fired boiler with deep air staging. Journal of the Energy Institute 90 (2):239–56. doi:10.1016/j.joei.2016.01.005.
  • Li, S., T. Xu, S. Hui, Q. Zhou, and H. Tan. 2009. Optimization of air staging in a 1 MW tangentially fired pulverized coal furnace. Fuel Processing Technology 90 (1):99–106. doi:10.1016/j.fuproc.2008.08.005.
  • Nguyen, T. H., J. Park, S. Jung, and S. Kim. 2019. A numerical study on NOx formation behavior in a lean-premixed gas turbine combustor using CFD-CRN method. Journal of Mechanical Science and Technology 33 (10):5051–60. doi:10.1007/s12206-019-0944-3.
  • Rao, A., Y. Liu, and F. Ma. 2022. Study of NOx emission for hydrogen enriched compressed natural along with exhaust gas recirculation in spark ignition engine by Zeldovich’s mechanism, support vector machine and regression correlation. Fuel 318:123577. doi:10.1016/j.fuel.2022.123577.
  • Rashkovskiy, S., S. Yakush, and A. A. Baranov. 2017. Stabilization of solid fuel combustion in a ramjet engine. Journal of Physics: Conference Series 815 (1):012008. doi:10.1088/1742-6596/815/1/012008.
  • Ribeirete, A., and M. Costa. 2009. Detailed measurements in a pulverized-coal-fired large-scale laboratory furnace with air staging. Fuel 88 (1):40–5. doi:10.1016/j.fuel.2008.07.033.
  • Shafiey Dehaj, M., and A. Arab Solghar. 2019. Study of natural gas/air combustion in the three-region porous medium burner. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (3):1–14. doi:10.1007/s40430-019-1637-7.
  • Shao, S., Z. Jan, and L. Na. 2016. Mechanism of influence of fuel classification and flue gas recirculation on low nitrogen combustion characteristics of natural gas. China Journal of Electrical Engineering 36 (24):6849–58. doi:10.13334/j.0258-8013.pcsee.160167.
  • Shi, B., J. Hu, H. Peng, and S. Ishizuka. 2018. Effects of internal flue gas recirculation rate on the NOx, emission in a methane/air premixed flame. Combustion and Flame 188:199–211. doi:10.1016/j.combustflame.2017.09.043.
  • Walton, S., X. He, B. Zigler, M. Wooldridge, and A. Atreya. 2007. An experimental investigation of iso-octane ignition phenomena. Combustion and Flame 150 (3):246–62. doi:10.1016/j.combustflame.2006.07.016.
  • Wang, H., M. Sun, and W. Bao. 2022. Investigation for effects of jet scale on flame stabilization in scramjet combustor. Energies 15 (10):3790. doi:10.3390/en15103790.
  • Wu, F., Y. Huang, and D. Wang. 2022. Experimental study on supported MnO2-based catalysts for NO oxidation. Reaction Kinetics, Mechanisms and Catalysis 136 (1):1–16. doi:10.1007/s11144-022-02343-2.
  • Wu, J., K. Zhao, X. Li, M. Wang, and S. Ni. 2020. Numerical study on staged combustion technology in burner of gas-fired boiler. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–14. doi:10.1080/15567036.2020.1808741.
  • Xiong, Z., Y. Jin, J. Wang, and X. Lu. 2022. Numerical study of the influence of secondary air uniformity on jet penetration and gas-solid diffusion characteristics in a large-scale CFB boiler. Energies 14 (18):5679. doi:10.3390/en14185679.
  • Yang, D., J. Li, Y. Wang, C. Tian, and C. Zhang. 2019. Recent patents on boiler burners for natural gas. Recent Patents on Engineering 12 (1):55–64. doi:10.2174/2212797612666181213092622.
  • Zhang, Y., R. Luo, Y. Dou, and Q. Zhou. 2018. Combustion characteristics and NOx emission through a swirling burner with adjustable flaring angle. Energies 11 (8):2173. doi:10.3390/en11082173.
  • Zhou, C., Y. Wang, Q. Jin, Q. Chen, and Y. Zhou. 2018. Mechanism analysis on the pulverized coal combustion flame stability and NOx emission in a swirl burner with deep air staging. Journal of the Energy Institute 92 (2):298–310. doi:10.1016/j.joei.2018.01.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.