52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biomass higher heating value prediction machine learning insights into ultimate, proximate, and structural analysis datasets

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2842-2854 | Received 27 Nov 2023, Accepted 19 Jan 2024, Published online: 02 Feb 2024

References

  • Ang, K. L. M., and J. K. P. Seng. 2021. Big data and machine learning with hyperspectral information in agriculture. Institute of Electrical and Electronics Engineers Access 9:36699–718. doi:10.1109/ACCESS.2021.3051196.
  • Arsenović, M., L. Pezo, S. Stanković, and Z. Radojević. 2015. Factor space differentiation of brick clays according to mineral content: Prediction of final brick product quality. Applied Clay Science 115:108–14. doi:10.1016/j.clay.2015.07.030.
  • Bakshaev, A., and R. Rudzkis. 2017. Goodness-of-fit tests based on the empirical characteristic function. Lithuanian Mathematical Journal 57 (2):155–70. doi:10.1007/s10986-017-9350-7.
  • Benos, L., A. C. Tagarakis, G. Dolias, R. Berruto, D. Kateris, and D. Bochtis. 2021. Machine learning in agriculture: A comprehensive updated review. Sensors 21 (11):1–55. doi:10.3390/s21113758.
  • Bilandzija, N., N. Voca, B. Jelcic, V. Jurisic, A. Matin, M. Grubor, and T. Kricka. 2018. Evaluation of Croatian agricultural solid biomass energy potential. Sustainable Energy Reviews 93:225–30. doi:10.1016/j.rser.2018.05.040.
  • Brandić, I., L. Pezo, N. Bilandžija, A. Peter, J. Šurić, and N. Voća. 2022. Artificial neural network as a tool for estimation of the higher heating value of miscanthus based on ultimate analysis. Mathematics 10 (20):1–12. doi:10.3390/math10203732.
  • Çakman, G., S. Gheni, and S. Ceylan. 2021. Prediction of higher heating value of biochars using proximate analysis by artificial neural network. Biomass Conversion and Biorefinery 1–9. doi:10.1007/s13399-021-01358-4.
  • Callejón-Ferre, A. J., J. Carreño-Sánchez, F. J. Suárez-Medina, J. Pérez-Alonso, and B. Velázquez-Martí. 2014. Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel 116:377–87. doi:10.1016/j.fuel.2013.08.023.
  • Cholewa, T., C. A. Balaras, J. Kurnitski, A. Siuta-Olcha, E. Dascalaki, R. Kosonen, C. Lungu, M. Todorovic, I. Nastase, C. Jolas, M. Cakan 2022. Energy efficient renovation of existing buildings for HVAC professionals, (Rehva guidebook; No. 32). Federation of European Heating, Ventilation and Air Conditioning Associations (REHVA).
  • Collard, F. X., and J. Blin. 2014. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews 38:594–608. doi:10.1016/j.rser.2014.06.013.
  • Cvetkov-Iliev, A., A. Allauzen, and G. Varoquaux. 2022. Analytics on non-normalized data sources: More learning, rather than more cleaning. Institute of Electrical and Electronics Engineers Access 10:42420–31. doi:10.1109/ACCESS.2022.3168013.
  • Dai, Z., Z. Chen, A. Selmi, K. Jermsittiparsert, N. M. Denić, and Z. Nеšić. 2021. Machine learning prediction of higher heating value of biomass. Biomass Conversion and Biorefinery 13 (5):1–9. doi:10.1007/s13399-021-01273-8.
  • Darvishan, A., H. Bakhshi, M. Madadkhani, M. Mir, and A. Bemani. 2018. Application of MLP-ANN as a novel predictive method for prediction of the higher heating value of biomass in terms of ultimate analysis. Energy Sources, Part A: Recovery, Uti-Lization and Environmental Effects 40 (24):2960–66. doi:10.1080/15567036.2018.1514437.
  • Das, N., P. K. Jena, D. Padhi, M. Kumar Mohanty, and G. Sahoo. 2021. A comprehensive review of characterization, pretreatment, and its applications on different lignocellulosic biomass for bioethanol production. Biomass Conversion and Biorefinery 13 (2):1–25. doi:10.1007/s13399-021-01294-3.
  • Fernández-Navarro, F., M. Carbonero-Ruz, D. Becerra Alonso, M. Torres-Jiménez 2016. IEEE Transactions on neural networks and learning systems 1 global sensitivity estimates for neural network classifiers, USA, 1–13.
  • García Nieto, P. J., E. García-Gonzalo, F. Sánchez Lasheras, J. P. Paredes-Sánchez, and P. Riesgo Fernández. 2019. Forecast of the higher heating value in biomass torrefaction by means of machine learning techniques. Journal of Computational and Applied Mathematics 357:284–301. doi:10.1016/j.cam.2019.03.009.
  • Ge, Z., Z. Song, S. X. Ding, and B. Huang. 2017. Data mining and analytics in the process industry: The role of machine learning. Institute of Electrical and Electronics Engineers Access 5:20590–616. doi:10.1109/ACCESS.2017.2756872.
  • Gironès, V. C., S. Moret, E. Peduzzi, M. Nasato, and F. Maréchal. 2017. Optimal use of biomass in large scale energy systems. Insights for Energy Policy Energy 137:789–97. doi:10.1016/j.energy.2017.05.027.
  • Güleç, F., D. Pekaslan, O. Williams, and E. Lester. 2022. Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses – A comprehensive study of artificial neural network applications. Fuel 320 (January):123944. doi:10.1016/j.fuel.2022.123944.
  • Ighalo, J. O., A. G. Adeniyi, and G. Marques. 2020. Application 349 of artificial neural networks in predicting biomass higher heating value: An early appraisal. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–8. https://www.tandfonline.com/loi/ueso20.
  • Ismaila, A., I. Abdullahi, and N. N. Garba. 2013. Investigation on biomass briquettes as energy source in relation to their calorific values and measurement of their total carbon and elemental contents for efficient biofuel utilization. Pelagia Research Library Advances in Applied Science Research 4 (2016):303–09.
  • Khayyaty, Z., I. F. Ilyasz, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J. A. Quiané-Ruiz, N. Tang, S. Yin 2015. BigDansing: A system for big data cleansing. Proceedings of the ACM SIGMOD International Conference on Management of Data, 1215–30. 10.1145/2723372.2747646
  • Kollo, T., and D. Von Rosen. 2005. Advanced multivariate statistics with matrices. Advanced Multivariate Statistics with Matrices. doi:10.1007/1-4020-3419-9.
  • Kołodziej, J., K. Pudełko, and J. Mańkowski. 2023. Energy and biomass yield of industrial hemp (Cannabis sativa L.) as influenced by seeding rate and harvest time in Polish agro-climatic conditions. Journal of Natural Fibers 20 (1). doi:10.1080/15440478.2022.2159609.
  • Li, T. Y., H. Xiang, Y. Yang, J. Wang, and G. Yildiz. 2021. Prediction of char production from slow pyrolysis of lignocellulosic biomass using multiple nonlinear regression and artificial neural network. Journal of Analytical and Applied Pyrolysis 159:105286. doi:10.1016/j.jaap.2021.105286.
  • Li, Y., C. Zou, M. Berecibar, E. Nanini-Maury, J. C. W. Chan, P. van den Bossche, J. Van Mierlo, and N. Omar. 2018. Random forest regression for online capacity estimation of lithium-ion batteries. Applied Energy 232:197–210. doi:10.1016/j.apenergy.2018.09.182.
  • Maksimuk, Y., Z. Antonava, V. Krouk, A. Korsakova, and V. Kursevich. 2021. Prediction of higher heating value (HHV) based on the structural composition for biomass. Fuel 299 (March):120860. doi:10.1016/j.fuel.2021.120860.
  • Mansor, A. M., J. S. Lim, F. N. Ani, H. Hashim, and W. S. Ho. 2019. Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chemical Engineering Transaction 72:79–84. doi:10.3303/CET1972014.
  • Martino, L., and J. Read. 2021. A joint introduction to gaussian processes and relevance vector machines with connections to Kalman filtering and other kernel smoothers. Information Fusion 74:17–38. doi:10.1016/j.inffus.2021.03.002.
  • Matin, S. S., and S. C. Chelgani. 2016. Estimation of coal gross calorific value based on various analyses by random forest method. Fuel 177:274–78. doi:10.1016/j.fuel.2016.03.031.
  • Maydeu-Olivares, A. 2017. Maximum likelihood estimation of structural equation models for continuous data: standard errors and goodness of fit. Structural Equation Modeling 24 (3):383–94. doi:10.1080/10705511.2016.1269606.
  • Noushabadi, A. S., A. Dashti, F. Ahmadijokani, J. Hu, and A. H. Mohammadi. 2021. Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation. Renewable Energy 179:550–62. doi:10.1016/j.renene.2021.07.003.
  • Ostertagová, E. 2012. Modelling using polynomial regression. Procedia Engineering 48:500–06. doi:10.1016/j.proeng.2012.09.545.
  • Pezo, L. L., B. L. Ćurčić, V. S. Filipović, M. R. Nićetin, G. B. Koprivica, N. M. Mišljenović, and L. B. Lević. 2013. Artificial neural network model of pork meat cubes osmotic dehydration. Chemical Industry 67 (3):465–75. doi:10.2298/HEMIND120529082P.
  • Qiu, J., Q. Wu, G. Ding, Y. Xu, and S. Feng. 2016. A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing. 2016(1). doi:10.1186/s13634-1.
  • Ranganayaki, V., and S. N. Deepa. 2019. Linear and non-linear proximal support vector machine classifiers for wind speed prediction. Cluster Computing 22 (S1):379–90. doi:10.1007/s10586-018-2005-6.
  • Schonlau, M., and R. Y. Zou. 2020. The random forest algorithm for statistical learning. Stata Journal 20 (1):3–29. doi:10.1177/1536867X20909688.
  • Scornet, E., G. Biau, and J. P. Vert. 2015. Consistency of random forests. The Annals of Statistics 43 (4):1716–41. doi:10.1214/15-AOS1321.
  • Soponpongpipat, N., D. Sittikul, and U. Sae-Ueng. 2015. Higher heating value prediction of torrefaction char produced from non-woody biomass. Front Energy 9 (4):461–71. doi:10.1007/s11708-015-0377-3.
  • Taki, M., and A. Rohani. 2022. Machine learning models for prediction the Higher Heating Value (HHV) of Municipal Solid Waste (MSW) for waste-to-energy evaluation. Case Studies in Thermal Engineering 31:101823. doi:10.1016/j.csite.2022.101823.
  • Tipping, M. E. 2001. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1 (3):211–44.
  • Tursi, A. 2019. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal 6 (2):962–79. doi:https://doi.org/10.18331/BRJ2019.6.2.3.
  • Veza, I., H. Irianto Panchal, P. A. Paristiawan, M. Idris, I. M. R. Fattah, N. R. Putra, R. Silambarasan, and R. Silambarasan. 2022. Improved prediction accuracy of biomass heating value using proximate analysis with various ANN training algorithms. Results in Engineering 16 (September):100688. doi:10.1016/j.rineng.2022.100688.
  • Voća, N., J. Leto, T. Karažija, N. Bilandžija, A. Peter, H. Kutnjak, J. Šurić, and M. Poljak. 2021. Energy properties and biomass yield of miscanthus x giganteus fertilized by municipal sewage sludge. Molecules 26 (14):4371. doi:10.3390/molecules26144371.
  • Xiaorui, L., Y. Jiamin, and Y. Longji. 2023. Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search algorithm. RSC Advances 13 (2):802–07. doi:10.1039/d2ra06869a.
  • Xing, J., K. Luo, H. Wang, Z. Gao, and J. Fan. 2019. A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy 188:116077. doi:10.1016/j.energy.2019.116077.
  • Yoon, Y., G. Swales, and T. M. Margavio. 2017. A comparison of discriminant analysis versus artificial neural networks. The Journal of the Operational Research Society 44 (1):51–60. doi:10.1057/jors.1993.6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.