76
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A comparative study on kinetic and thermodynamic studies for pyrolysis of corn-cob with and without aluminium oxides catalyst using thermogravimetric analysis

ORCID Icon, ORCID Icon &
Pages 2738-2749 | Received 16 Oct 2023, Accepted 19 Jan 2024, Published online: 30 Jan 2024

References

  • Ateş, F., and M. A. Işıkdağ. 2009. Influence of temperature and alumina catalyst on pyrolysis of corncob. Fuel 88 (10):1991–1997. doi:10.1016/j.fuel.2009.03.008.
  • Chen, D., T. Long, and X. Zhu. 2015. Effect of heating rate on the pyrolysis of corn straw with different moisture content. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 37 (12):1332–1339. doi:10.1080/15567036.2011.609867.
  • Demiral, İ., A. Eryazıcı, and S. Şensöz. 2012. Bio-oil production from pyrolysis of corncob (zea mays L.). Biomass and Bioenergy 36:43–49. doi:10.1016/j.biombioe.2011.10.045.
  • Dhyani, V., J. Kumar, and T. Bhaskar. 2017. Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresource Technology 245:1122–1129. doi:10.1016/j.biortech.2017.08.189.
  • Din, M. I., S. Sadaf, Z. Hussain, and R. Khalid. 2020. Assembly of superparamagnetic iron oxide nanoparticles (Fe3O4-Nps) for catalytic pyrolysis of corn cob biomass. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–9. doi:10.1080/15567036.2020.1767235.
  • Durak, H. 2016. Pyrolysis of Xanthium strumarium in a fixed bed reactor: Effects of boron catalysts and pyrolysis parameters on product yields and character. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 38 (10):1400–1409. doi:10.1080/15567036.2014.947446.
  • Fernandez, A., P. Sette, M. Echegaray, J. Soria, D. Salvatori, G. Mazza, and R. Rodriguez. 2023. Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes. Biomass Conversion and Biorefinery 13 (14):12509–12526. doi:10.1007/s13399-021-02197-z.
  • He, Q., L. Ding, Y. Gong, W. Li, J. Wei, and G. Yu. 2019. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. Bioresource Technology 280:104–111. doi:10.1016/j.biortech.2019.01.138.
  • Im, H., and C. G. Kim. 2017. Characterization of dried sewage sludge for co-firing in coal power plant by using thermal gravimetric analysis. Journal of Material Cycles and Waste Management 19 (3):1044–1051. doi:10.1007/s10163-016-0580-2.
  • Kim, Y. S., Y. S. Kim, and S. H. Kim. 2010. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste−waste lube oil compounds. Environmental Science & Technology 44 (13):5313–5317. doi:10.1021/es101163e.
  • Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry 29 (11):1702–1706. doi:10.1021/ac60131a045.
  • Li, Y., Y. Wang, M. Chai, C. Li, D. Yellezuome, and R. Liu. 2023. Pyrolysis kinetics and thermodynamic parameters of bamboo residues and its three main components using thermogravimetric analysis. Biomass & bioenergy 170:106705. doi:10.1016/j.biombioe.2023.106705.
  • Li, Z., W. Zhao, B. Meng, C. Liu, Q. Zhu, and G. Zhao. 2008. Kinetic study of corn straw pyrolysis: Comparison of two different three-pseudocomponent models. Bioresource Technology 99 (16):7616–7622. doi:10.1016/j.biortech.2008.02.003.
  • Liu, H., G. Xu, and G. Li. 2021. Pyrolysis characteristic and kinetic analysis of sewage sludge using model-free and master plots methods. Process Safety and Environmental Protection 149:48–55. doi:10.1016/j.psep.2020.10.044.
  • Liu, X., Y. Zhang, Z. Li, R. Feng, and Y. Zhang. 2014. Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresource Technology 170:76–82. doi:10.1016/j.biortech.2014.07.077.
  • Loy, A. C. M., D. K. W. Gan, S. Yusup, B. L. F. Chin, M. K. Lam, M. Shahbaz, P. Unrean, M. N. Acda, and E. Rianawati. 2018. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst. Bioresource Technology 261:213–22. doi:10.1016/j.biortech.2018.04.020.
  • Miao, W., X. Li, Y. Wang, and Y. Lv. 2019. Pyrolysis characteristics of oil-field sludge and the comparison of kinetic analysis with two representative methods. Journal of Petroleum Science and Engineering 182:106309. doi:10.1016/j.petrol.2019.106309.
  • Mishra, A., S. Nanda, M. R. Parida, P. K. Jena, S. K. Dwibedi, S. M. Samantaray, D. Samantaray, M. K. Mohanty, and M. Dash. 2023. A comparative study on pyrolysis kinetics and thermodynamic parameters of little millet and sunflower stems biomass using thermogravimetric analysis. Bioresource Technology 367:128231. doi:10.1016/j.biortech.2022.128231.
  • Mishra, R. K., and K. Mohanty. 2018. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology 251:63–74. doi:10.1016/j.biortech.2017.12.029.
  • Mohan, D., C. U. Pittman Jr, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels 20 (3):848–889. doi:10.1021/ef0502397.
  • Nawaz, A., and P. Kumar. 2022. Pyrolysis behavior of low value biomass (sesbania bispinosa) to elucidate its bioenergy potential: Kinetic, thermodynamic and prediction modelling using artificial neural network. Renewable Energy 200:257–270. doi:10.1016/j.renene.2022.09.110.
  • Nisar, J., A. Rahman, G. Ali, A. Shah, Z. H. Farooqi, I. A. Bhatti, M. Iqbal, and N. Ur Rehman. 2020. Pyrolysis of almond shells waste: Effect of zinc oxide on kinetics and product distribution. Biomass Conversion Biorefinery 12 (7):1–13. doi:10.1007/s13399-020-00762-6.
  • Raza, M., B. Abu-Jdayil, and A. Inayat. 2023. Pyrolytic kinetics and thermodynamic analyses of date seeds at different heating rates using the coats–Redfern method. Fuel 342:127799. doi:10.1016/j.fuel.2023.127799.
  • Ren, S., H. Lei, L. Wang, Q. Bu, S. Chen, and J. Wu. 2013. Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosystems Engineering 116 (4):420–426. doi:10.1016/j.biosystemseng.2013.10.003.
  • Şensöz, S., D. Angın, and S. Yorgun. 2000. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): Fuel properties of bio-oil. Biomass and Bioenergy 19 (4):271–279. doi:10.1016/S0961-9534(00)00041-6.
  • Torres-Sciancalepore, R., D. Asensio, D. Nassini, A. Fernandez, R. Rodriguez, G. Fouga, and G. Mazza. 2022. Assessment of the behavior of Rosa rubiginosa seed waste during slow pyrolysis process towards complete recovery: Kinetic modeling and product analysis. Energy Conversion and Management 272:116340. doi:10.1016/j.enconman.2022.116340.
  • Torres-Sciancalepore, R., M. Riveros-Gomez, D. Zalazar-García, D. Asensio, M. P. Fabani, R. Rodriguez, G. Fouga, and G. Mazza. 2023. Two-step valorization of invasive species Rosa rubiginosa L. husk waste through eco-friendly optimized pectin extraction and subsequent pyrolysis. Journal of Environmental Chemical Engineering 11 (5):110802. doi:10.1016/j.jece.2023.110802.
  • Wang, J., D. Yellezuome, Z. Zhang, S. Liu, J. Lu, P. Zhang, S. Zhang, P. Wen, M. M. Rahman, and C. Li. 2022. Understanding pyrolysis mechanisms of pinewood sawdust and sugarcane bagasse from kinetics and thermodynamics. Industrial Crops and Products 177:114378. doi:10.1016/j.indcrop.2021.114378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.