41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cupric oxide nanofluid influenced parabolic trough solar collector: thermal performance evaluation

, , ORCID Icon &
Pages 2811-2827 | Received 03 Oct 2023, Accepted 20 Jan 2024, Published online: 31 Jan 2024

References

  • Akpinar, E., and F. Koçyiğit. 2010. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Applied Energy 87 (11):3438–50. doi:10.1016/j.apenergy.2010.05.017.
  • Allouhi, A., M. B. Amine, R. Saidur, T. Kousksou, and A. Jamil. 2018. Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications. Energy Conversion and Management 155:201–17. doi:10.1016/j.enconman.2017.10.059.
  • Ansari, M., and M. Bazargan. 2018. Optimization of flat plate solar air heaters with ribbed surfaces. Applied Thermal Engineering 136:356–63. doi:10.1016/j.applthermaleng.2018.02.099.
  • Babu, J. A. R., K. K. Kumar, and S. S. Rao. 2017. State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy Reviews 77:551–65. doi:10.1016/j.rser.2017.04.040.
  • Baskar, S. 2022. Thermal management of solar thermoelectric power generation. AIP Conference Proceedings, AIP Conference Proceedings 2473 (1). doi: 10.1063/5.0096456.
  • Brahim, T., and A. Jemni. 2023. Comparative study of parabolic trough solar collector using sysltherm-800 and therminol-VP1 non-metallic nanofluids. Thermal Science and Engineering Progress 43:101951. doi:10.1016/j.tsep.2023.101951.
  • Christraj, W. 2013. ‘Experimental investigation of multipurpose solar heating system’. Journal of Energy Engineering. doi:10.1061/(ASCE)EY.1943-7897.
  • Christraj, W. 2014. Performance analysis of solar water heater in multipurpose solar heating system. Applied Mechanics & Materials 592-594:1706–13. doi:10.4028/www.scientific.net/AMM.592-594.1706.
  • Coccia, G., G. D. Nicola, and M. Sotte. 2015. Design, manufacture, and test of a prototype for a parabolic trough collector for industrial process heat. Renewable Energy 74:727–36. doi:10.1016/j.renene.2014.08.077.
  • Darbari, B., and S. Rashidi. 2022. Performance analysis for single slope solar still enhanced with multi-shaped floating porous absorber. Sustainable Energy Technologies and Assessments 50:101854. doi:10.1016/j.seta.2021.101854.
  • Elmnefi, M. E., and W. Al-Khazraji. 2022. Numerical and experimental studies of thermal performance enhancement for parabolic trough solar collector using none-circulated CuO/synthetic oil nanofluid. International Journal of Numerical Methods for Heat & Fluid Flow 33 (9):3124–63. doi:10.1108/HFF-11-2022-0659.
  • Esmaeili, Z., S. Akbarzadeh, S. Rashidi, and M. S. Valipour. 2023. Effects of hybrid nanofluids and turbulator on efficiency improvement of parabolic trough solar collectors. Engineering Analysis with Boundary Elements 148:114–25. doi:10.1016/j.enganabound.2022.12.024.
  • Farooq, M., M. Farhan, G. Ahmad, Z. U. R. Tahir, M. Usman, M. Sultan, M. Saad Hanif, M. Imran, S. Anwar, A. M. El-Sherbeeny, et al. 2022. Thermal performance enhancement of Nanofluids based Parabolic Trough Solar Collector (NPTSC) for sustainable environment. Alexandria Engineering Journal 61(11):8943–53. doi:10.1016/j.aej.2022.02.029.
  • Fayadh, S. B., W. H. Khalil, and H. K. Dawood. 2023. Numerical study on the effect of using CuO-water nanofluid as a heat transfer fluid on the performance of the parabolic trough solar collector. CFD Letters 15 (5):120–33. doi:10.37934/cfdl.15.5.120133.
  • Fotowat, S., S. Askar, M. Ismail, and A. Fartaj. 2017. A study on corrosion effects of a water based nanofluid for enhanced thermal energy applications. Sustainable Energy Technologies and Assessments 24:39–44. doi:10.1016/j.seta.2017.02.001.
  • Fotukian, S. M., and M. Nasr Esfahany. 2010. Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. International Communications in Heat and Mass Transfer 37 (2):214–19. doi:10.1016/j.icheatmasstransfer.2009.10.003.
  • Ghasemi, S. E., and A. A. Ranjbar. 2017. Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants. International Journal of Hydrogen Energy 42 (34):21626–34. doi:10.1016/j.ijhydene.2017.07.087.
  • Gowda, A., S. Dassappa, R. Hanumanthrappa, and S. Kempanna. 2019. Effect of reduced graphene oxide as nanofluid on solar parabolic trough collector receiver model. Material Today Proceedings 27:396–401. doi:10.1016/j.matpr.2019.11.234.
  • Gupta, M., V. Singh, R. Kumar, and Z. Said. 2017. A review on thermophysical properties of nanofluids and heat transfer applications. Renewable and Sustainable Energy Reviews 74:638–70. doi:10.1016/j.rser.2017.02.073.
  • Hamada, M. A., A. Ehab, H. Khalil, M. M. A. Al-Sood, and S. W. Sharshir. 2023. Thermal performance augmentation of parabolic trough solar collector using nanomaterials, fins and thermal storage material. Journal of Energy Storage 67:107591. doi:10.1016/j.est.2023.107591.
  • Hassan, H., S. A. Elfadl, and M. F. El-Dosoky. 2020. An experimental investigation of the performance of new design of solar air heater (tubular). Renewable Energy 151:1055–66. doi:10.1016/j.renene.2019.11.112.
  • Huang, N., X. Zhao, Y. Guo, G. Cai, and R. Wang. 2023. Distribution network expansion planning considering a distributed hydrogen-thermal storage system based on photovoltaic development of the whole county of China. Energy 278:127761. doi:10.1016/j.energy.2023.127761.
  • Karami, M., M. A. Akhavan-Bahabadi, S. Delfani, and M. Raisee. 2015. Experimental investigation of CuOnanofluid-based direct absorption solar collector for residential applications. Renewable and Sustainable Energy Reviews 52:793–801. doi:10.1016/j.rser.2015.07.131.
  • Knysh, L. 2022. Thermo-fluid modeling and thermodynamic analysis of low-temperature parabolic trough systems with multi-walled carbon nanotubes/water nanofluids. International Journal of Thermal Sciences 181:107770. doi:10.1016/j.ijthermalsci.2022.107770.
  • Laaraba, A., and G. Mebarki. 2020. Enhancing thermal performance of a parabolic trough collector with inserting longitudinal fins in the down half of the receiver tube. Journal of Thermal Science 29 (5):1309–21. doi:10.1007/s11630-020-1256-8.
  • Manikandan, G. K., S. Iniyan, and R. Goic. 2019. Enhancing the optical and thermal efficiency of a parabolic trough collector – a review. Applied Energy 235:1524–40. doi:10.1016/j.apenergy.2018.11.048.
  • Noman, M., A. Wasim, M. Ali, M. J. Ahanzaib, S. Hussain, H. M. K. Ali, and H. M. Ali. 2019. An investigation of a solar cooker with parabolic trough concentrator. Case Studies in Thermal Engineering 14:100436. doi:10.1016/j.csite.2019.100436.
  • Osorio, J. D., and A. R. Alvarez. 2022. Influence of the concentration ratio on the thermal and economic performance of parabolic trough collectors. Renewable Energy 181:786–802. doi:10.1016/j.renene.2021.09.040.
  • Prieto, C., A. R. Sánchez, F. J. R. Cabañas, and L. F. Cabeza. 2019. Feasibility study of freeze recovery options in parabolic trough collector plants working with molten salt as heat transfer fluid. Energies 12:2340. doi:10.3390/en12122340.
  • Ram, S., H. Ganesan, V. Saini, and A. Kumar. 2023. Performance assessment of a parabolic trough solar collector using nanofluid and water based on direct absorption. Renewable Energy 214:11–22. doi:10.1016/j.renene.2023.06.016.
  • Sadeghi, G., S. Nazari, M. Ameri, and F. Shama. 2020. Energy and exergy evaluation of the evacuated tube solar collector using Cu2O/water nanofluid utilizing ANN methods. Sustainable Energy Technologies and Assessments 37:100578. doi:10.1016/j.seta.2019.100578.
  • Shahrul, I. M., I. M. Mahbubul, R. Saidur, S. S. Khaleduzzaman, and M. F. M. Sabri. 2016. Performance evaluation of a shell and tube heat exchanger operated with oxide based nanofluids. Heat and Mass Transfer 52 (8):1425–33. doi:10.1007/s00231-015-1664-6.
  • Sharama, M., and R. Jilte. 2020. A review on passive methods for thermal performance enhancement in parabolic trough solar collectors. International Journal of Energy Research 45 (4):4932–66. doi:10.1002/er.6212.
  • Smaisim, G. F., A. Hussein, W. A. Abed, and M. Azher. 2022. Enhancement of heat transfer from solar thermal collector using nanofluid. Open Engineering 12 (1):968–76. doi:10.1515/eng-2022-0337.
  • Vengadesan, E., S. Thameenansari, E. J. Manikandan, and R. Senthil. 2022. Experimental study on heat transfer enhancement of parabolic trough solar collector using a rectangular channel receiver. Journal of the Taiwan Institute of Chemical Engineers 135:104361. doi:10.1016/j.jtice.2022.104361.
  • Vishnu, S. K., and R. Senthil. 2023. Experimental performance evaluation of a solar parabolic dish collector using spiral flow path receiver. Applied Thermal Engineering 231:120979. doi:10.1016/j.applthermaleng.2023.120979.
  • Vivekanandan, M. 2021. Experimental and CFD investigation of Helical coil heat exchanger with flower baffle. Materials Today: Proceedings 37 (2):2174–82. doi:10.1016/j.matpr.2020.07.642.
  • Vivekanandan, M., M. Premalatha, and N. Anantharaman. 2023. Hydrodynamic studies of CFBC boiler with three types of air distributor nozzles: Experimental and CFD analysis. Journal of Thermal Analysis and Calorimetry 148 (2):405–15. doi:10.1007/s10973-022-11682-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.