117
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermokinetics and synergistic effect analysis of peat-lignite coal co-pyrolysis

, &
Pages 3124-3135 | Received 02 Dec 2022, Accepted 10 Jan 2024, Published online: 22 Feb 2024

References

  • Alvarez, J., M. Amutio, G. Lopez, L. Santamaria, J. Bilbao, and M. Olazar. 2019. Improving bio-oil properties through the fast Co-pyrolysis of lignocellulosic biomass and waste tyres. Waste Management 85 (February):385–95. doi:10.1016/j.wasman.2019.01.003.
  • Brems, A., J. Baeyens, J. Beerlandt, and R. Dewil. 2011. Thermogravimetric pyrolysis of waste polyethylene-terephthalate and polystyrene: A critical assessment of kinetics modelling. Resources, Conservation & Recycling 55 (8):772–81. doi:10.1016/j.resconrec.2011.03.003.
  • Cetin, E., B. Moghtaderi, R. Gupta, and T. F. Wall. 2004. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83 (16):2139–50. doi:10.1016/j.fuel.2004.05.008.
  • Gohar, H., A. H. Khoja, A. A. Ansari, S. R. Naqvi, R. Liaquat, M. Hassan, K. Hasni, U. R. Qazi, and I. Ali. 2022. Investigating the characterisation, kinetic mechanism, and thermodynamic behaviour of coal-biomass blends in Co-pyrolysis process. Process Safety and Environmental Protection 163 (July):645–58. doi:10.1016/j.psep.2022.05.063.
  • Goldfarb, J., A. Celaya, and A. Lade. 2015. Co-combustion of Brewer’s spent grains and Illinois No. 6 coal: Impact of blend ratio on pyrolysis and oxidation behavior. Fuel Processing Technology 129 (January):39–51. doi:10.1016/j.fuproc.2014.08.004.
  • Güldoğan, Y., T. Bozdemir, and T. Durusoy. 2001a. Pyrolysis kinetics of blends of gediz lignite with Denizli Peat. Energy Sources 23 (4):393–99. doi:10.1080/00908310152004755.
  • Güldoğan, Y., T. Bozdemir, and T. Durusoy. 2001b. Pyrolysis kinetics of blends of mengen lignite with Denizli Peat. Energy Sources 23 (7):657–63. doi:10.1080/00908310152004755.
  • Haykiri-Acma, H., and S. Yaman. 2010. Interaction between biomass and different rank coals during co-pyrolysis. Renewable Energy 35 (1):288–92. doi:10.1016/j.renene.2009.08.001.
  • Jiang, L., Z. Zhou, H. Xiang, Y. Yang, H. Tian, and J. Wang. 2022. Characteristics and synergistic effects of Co-pyrolysis of microalgae with polypropylene. Fuel 314 (April):122765. doi:10.1016/j.fuel.2021.122765.
  • Kim, J. K., H. D. Lee, H. S. Kim, H. Y. Park, and S. C. Kim. 2014. Combustion possibility of low rank Russian peat as a blended fuel of pulverized coal fired power plant. Journal of Industrial and Engineering Chemistry 20 (4):1752–60. doi:10.1016/j.jiec.2013.08.027.
  • Liu, Z., F. S. Zhang, and J. Wu. 2010. Characterization and application of chars produced from Pinewood pyrolysis and hydrothermal treatment. Fuel 89 (2):510–14. doi:10.1016/j.fuel.2009.08.042.
  • Li, B., and W. Wei. 2016. Effect of lignin on the Co-pyrolysis of sludge and cellulose. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 38 (12):1825–31. doi:10.1080/15567036.2014.964816.
  • Li, Y., H. Zhao, X. Sui, X. Wang, and J. Hongbing. 2022. Studies on individual pyrolysis and Co-pyrolysis of peat–biomass blends: Thermal decomposition behavior, possible synergism, product characteristic evaluations and kinetics. Fuel 310 (February):122280. doi:10.1016/j.fuel.2021.122280.
  • Mahmood, H., N. Ramzan, A. Shakeel, M. Moniruzzaman, T. Iqbal, M. A. Kazmi, and M. Sulaiman. 2019. Kinetic modeling and optimization of parameters for biomass pyrolysis: A comparison of different lignocellulosic Biomass. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 41 (14):1690–700. doi:10.1080/15567036.2018.1549144.
  • Mao, L., L., Hanxu, B., Xia, T., Liu, Y. Zhang, and M. Zheng. 2022. Effect of Ca/ Fe-based auxiliaries on Anthracite Char Gasification under CO2 atmosphere: Synergistic catalysis. Thermochimica Acta 713:179224. doi:10.1016/j.tca.2022.179224.
  • Martinez–Vargas, S., L. Valle–Ascencio, A. Mtz-Enriquez, A. Glez-Rosas, V. Vázquez–Hipólito, O. Mijangos–Ricardez, and J. López–Luna. 2021. As(III) adsorption on Co-precipitated cobalt substituted ferrite nanoparticles. Journal of Magnetism and Magnetic Materials 539 (December):168389. doi:10.1016/j.jmmm.2021.168389.
  • Mishra, R. K., and K. Mohanty. 2018. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology 251 (March):63–74. doi:10.1016/j.biortech.2017.12.029.
  • Müsellim, E., M. H. Tahir, M. S. Ahmad, and S. Ceylan. 2018. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Applied Thermal Engineering 137 (June):54–61. doi:10.1016/j.applthermaleng.2018.03.050.
  • Muthuraman, M., T. Namioka, and K. Yoshikawa. 2010. A comparative study on Co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: A thermogravimetric analysis. Fuel Processing Technology 91 (5):550–58. doi:10.1016/j.fuproc.2009.12.018.
  • Sciancalepore, R. T., A. Fernandez, D. Asensio, M. Riveros, M. P. Fabani, G. Fouga, R. Rodriguez, and G. Mazza. 2022. Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds. Energy Conversion and Management 252 (January):115076. doi:10.1016/j.enconman.2021.115076.
  • Shahdan, N. A., K. Shameli, N. Ibrahim, R. Isha, P. Tamunaidu, and Z. A. Manan. 2021. Catalytic Co-pyrolysis of empty fruit bunch and high-density polyethylene. Chemical Engineering Transactions 89 (December):205–10. doi:10.3303/CET2189035.
  • Singh, R. K., T., Patil, D., Pandey, S. P. Tekade, and A. N. Sawarkar. 2022. Co-pyrolysis of Petroleum Coke and banana leaves biomass: Kinetics, reaction mechanism, and thermodynamic analysis. Journal of Environmental Management 301:113854. doi:10.1016/j.jenvman.2021.113854.
  • Söyler, N., and S. Ceylan. 2021. Thermokinetic analysis and product characterization of waste tire-hazelnut shell co-pyrolysis: TG-FTIR and fixed bed reactor study. Journal of Environmental Chemical Engineering 9 (5):106165. doi:10.1016/j.jece.2021.106165.
  • Sutcu, H. 2007. Pyrolysis by thermogravimetric analysis of blends of peat with coals of different characteristics and biomass. Journal of the Chinese Institute of Chemical Engineers 38 (3):245–49. doi:10.1016/j.jcice.2007.03.002.
  • Tauseef, M., A., Ayaz Ansari, A., Hussain Khoja, S., Raza Naqvi, R., Liaquat, W., Nimmo, and S. Sheraz Daood. 2022. Thermokinetics synergistic effects on Co-pyrolysis of coal and rice husk blends for bioenergy production. Fuel 318:123685. doi:10.1016/j.fuel.2022.123685.
  • Van de Velden, M., J. Baeyens, and I. Boukis. 2008. Modeling CFB biomass pyrolysis reactors. Biomass and Bioenergy 32 (2):128–39. doi:10.1016/j.biombioe.2007.08.001.
  • Vyas, A., T. Chellappa, and J. L. Goldfarb. 2017. Porosity development and reactivity changes of coal–biomass blends during co-pyrolysis at various temperatures. Journal of Analytical and Applied Pyrolysis 124 (March):79–88. doi:10.1016/j.jaap.2017.02.018.
  • Wang, B., Z. Yao, M. Reinmöller, N. Kishore, F. Tesfaye, and R. Luque. 2023. Pyrolysis behavior, kinetics, and thermodynamics of waste pharmaceutical blisters under CO2 atmosphere. Journal of Analytical and Applied Pyrolysis 170 (March):105883. doi:10.1016/j.jaap.2023.105883.
  • Wen, Y., S. Wang, W. Mu, W. Yang, and P. G. Jönsson. 2020. Pyrolysis performance of peat moss: A simultaneous in-situ thermal analysis and bench-scale experimental study. Fuel 277 (October):118173. doi:10.1016/j.fuel.2020.118173.
  • Wu, Z., J. Zhang, Y. Fan, B. Zhang, W. Guo, R. Zhang, Y. Li, and B. Yang. 2021. Synergistic effects from Co-pyrolysis of lignocellulosic biomass with Low-Rank Coal: A perspective based on the interaction of organic components. Fuel 306 (December):121648. doi:10.1016/j.fuel.2021.121648.
  • Yang, X., C. Yuan, J. Xu, and W. Zhang. 2014. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor. Bioresource Technology 173 (September):1–5. doi:10.1016/j.biortech.2014.09.073.
  • Zhanshi, N., B., Haobo, C., Jiang, C., Wang, J., Tian, W., Zhou, H. Sun, and Q. Lin. 2021. Investigation of the Co-pyrolysis of coal slime and Coffee Industry Residue Based on Machine Learning Methods and TG-FTIR: Synergistic effect, Kinetics and thermodynamic. Fuel 305:121527. doi:10.1016/j.fuel.2021.121527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.