161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sulfide-based MOF material modification of separators: enhancing performance of lithium-sulfur batteries by suppressing shuttle effect

, , , , ORCID Icon, , & show all
Pages 2828-2841 | Received 01 Sep 2023, Accepted 23 Jan 2024, Published online: 02 Feb 2024

References

  • Bruce, P. G., S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon. 2012. Li-O2 and Li-S batteries with high energy storage. Nature Materials 11(1):19–29. doi:10.1038/nmat3191.
  • Chen, L., X. Li, and Y. Xu. 2018. Recent advances of polar transition-metal sulfides host materials for advanced lithium–sulfur batteries. Functional Materials Letters 11 (6):1840010. doi:10.1142/S1793604718400106.
  • Chen, M., Z. Su, K. Jiang, Y. Pan, Y. Zhang, and D. Long. 2019. Promoting sulfur immobilization by a hierarchical morphology of hollow carbon nanosphere clusters for high-stability Li–S battery. Journal of Materials Chemistry A 7 (11):6250–58. doi:10.1039/C8TA12349G.
  • Chen, H., C. Wang, Y. Dai, S. Qiu, J. Yang, W. Lu, and L. Chen. 2015. Rational design of cathode structure for high rate performance lithium–sulfur batteries. Nano Letters 15 (8):5443–48. doi:10.1021/acs.nanolett.5b01837.
  • Chen, T., Z. Zhang, B. Cheng, R. Chen, Y. Hu, L. Ma, G. Zhu, J. Liu, and Z. Jin. 2017. Self-templated formation of interlaced carbon nanotubes threaded hollow Co 3 S 4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries. Journal of the American Chemical Society 139 (36):12710–15. doi:10.1021/jacs.7b06973.
  • Dong, Y., W. Shi, P. Lu, J. Qin, S. Zheng, B. Zhang, X. Bao, and Z.-S. Wu. 2018. 2D holey cobalt sulfide nanosheets derived from metal–organic frameworks for high-rate sodium ion batteries with superior cyclability. Journal of Materials Chemistry A 6 (29):14324–29. doi:10.1039/C8TA05612A.
  • Dunn, B., H. Kamath, and J. M. Tarascon. 2011. Electrical energy storage for the grid: A battery of choices. Science 334 (6058):928–35. doi:10.1126/science.1212741.
  • Jin, L., B. Huang, X. Qian, J. Chen, J. Cheng, Q. Hao, and K. Zhang. 2022. Hollow bimetallic sulfide composite coated separator for hindering the shuttle of polysulfides in Li-S batteries. Journal of Alloys and Compounds 926:166515. doi:10.1016/j.jallcom.2022.166515.
  • Kong, W., L. Yan, Y. Luo, D. Wang, K. Jiang, Q. Li, S. Fan, and J. Wang. 2017. Ultrathin MnO 2 /Graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for High-Performance Li–S batteries. Advanced Functional Materials 27 (18):1606663. doi:10.1002/adfm.201606663.
  • Li, G., Z. Chen, and J. Lu. 2018. Lithium-sulfur batteries for commercial applications. Chem 4 (1):3–7. doi:10.1016/j.chempr.2017.12.012.
  • Li, Y., J. Li, J. Yuan, Y. Zhao, J. Zhang, H. Liu, F. Wang, J. Tang, and J. Song. 2021. 3D CoS2/rGO aerogel as trapping-catalyst sulfur host to promote polysulfide conversion for stable Li-S batteries. Journal of Alloys and Compounds 873:159780. doi:10.1016/j.jallcom.2021.159780.
  • Li, J., Z. Niu, C. Guo, M. Li, and W. Bao. 2021. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review. Journal of Energy Chemistry 54:434–51. doi:10.1016/j.jechem.2020.06.009.
  • Lin, Y., Z. Ouyang, S. He, X. Song, Y. Luo, J. Zhao, Y. Xiao, S. Lei, C. Yuan, B. Cheng, et al. 2022. An individual sandwich hybrid nanostructure of cobalt disulfide in-situ grown on N doped carbon layer wrapped on multi-walled carbon nanotubes for high-efficiency lithium sulfur batteries. Journal of Colloid and Interface Science 610:560–72. doi:10.1016/j.jcis.2021.11.102.
  • Manthiram, A., Y. Fu, S. H. Chung, C. Zu, and Y.-S. Su. 2014. Rechargeable lithium–sulfur batteries. Chemical Reviews 114 (23):11751–87. doi:10.1021/cr500062v.
  • Manthiram, A., Y. Fu, and Y. S. Su. 2013. Challenges and prospects of lithium-sulfur batteries. Accounts of Chemical Research 46 (5):1125–34. doi:10.1021/ar300179v.
  • Na, T., Y. Liu, X. Li, W. Zheng, Y. Dai, Z. Yan, W. Kou, and G. He. 2020. Electrocatalytic polysulfide transformation for suppressing the shuttle effect of Li-S batteries. Applied Surface Science 528:146970. doi:10.1016/j.apsusc.2020.146970.
  • Raccichini, R., A. Varzi, S. Passerini, and B. Scrosati. 2015. The role of graphene for electrochemical energy storage. Nature Materials 14 (3):271–79. doi:10.1038/nmat4170.
  • Ren, M., X. Lu, Y. Chai, X. Zhou, J. Ren, Q. Zheng, and D. Lin. 2019. A three-dimensional conductive cross-linked all-carbon network hybrid as a sulfur host for high performance lithium-sulfur batteries. Journal of Colloid and Interface Science 552:91–100. doi:10.1016/j.jcis.2019.05.042.
  • Seh, Z. W., Y. Sun, Q. Zhang, and Y. Cui. 2016. Designing high-energy lithium-sulfur batteries. Chemical Society Reviews 45(20):5605–34. doi:10.1039/C5CS00410A.
  • Tan, L., X. Li, Z. Wang, H. Guo, and J. Wang. 2018. Lightweight reduced graphene Oxide@MoS 2 interlayer as polysulfide barrier for high-performance lithium–sulfur batteries. ACS Applied Materials & Interfaces 10 (4):3707–13. doi:10.1021/acsami.7b18645.
  • Wang, S., X. Liu, K. Zou, Y. Deng, and G. Chen. 2020. Toward a practical Li-S battery enabled by synergistic confinement of a nitrogen-enriched porous carbon as a multifunctional interlayer and sulfur-host material. Journal of Electroanalytical Chemistry 858:113797. doi:10.1016/j.jelechem.2019.113797.
  • Wang, X., C. Yang, X. Xiong, G. Chen, M. Huang, J.-H. Wang, Y. Liu, M. Liu, and K. Huang. 2019. A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Materials 16:344–53. doi:10.1016/j.ensm.2018.06.015.
  • Xie, Y., J. Cao, X. Wang, W. Li, L. Deng, S. Ma, H. Zhang, C. Guan, and W. Huang. 2021. MOF-Derived Bifunctional Co 0.85 Se nanoparticles embedded in N-Doped carbon nanosheet arrays as efficient sulfur hosts for lithium–sulfur batteries. Nano Letters 21 (20):8579–86. doi:10.1021/acs.nanolett.1c02037.
  • Yang, Y., S. Ma, M. Xia, Y. Guo, Y. Zhang, L. Liu, C. Zhou, G. Chen, X. Wang, Q. Wu, et al. 2023. Elaborately converting hierarchical NiCo–LDH to rod–like LDH–decorated MOF as interlayer for high–performance lithium–sulfur battery. Materials Today Physics 35:101112. doi:10.1016/j.mtphys.2023.101112.
  • Yan, X., Y. Jia, and X. Yao. 2021. Defective structures in metal compounds for energy‐related electrocatalysis. Small Structures 2 (2):2000067. doi:10.1002/sstr.202000067.
  • Yao, S., J. Cui, J. Q. Huang, Z. Lu, Y. Deng, W. G. Chong, J. Wu, M. Ihsan Ul Haq, F. Ciucci, and J.-K. Kim. 2018. Novel 2D Sb 2 S 3 nanosheet/CNT coupling layer for exceptional polysulfide recycling performance. Advanced Energy Materials 8 (24):1800710. doi:10.1002/aenm.201800710.
  • Yuan, Z., H. J. Peng, T. Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, and Q. Zhang. 2016. Powering lithium–sulfur battery performance by propelling polysulfide Redox at sulfiphilic hosts. Nano Letters 16 (1):519–27. doi:10.1021/acs.nanolett.5b04166.
  • Zeng, J., D. K. C, V. S. V. P, and J. Shim. 2022. Hierarchical 3D micro-nanostructures based on in situ deposited bimetallic metal-organic structures on carbon fabric for supercapacitor applications. International Journal of Energy Research 46 (5):6031–44. doi:10.1002/er.7544.
  • Zeng, J., K. C. Devarayapalli, S. V. P. Vattikuti, and J. Shim. 2022. Split-cell symmetric supercapacitor performance of bimetallic MOFs yolk-shell hierarchical microstructure. Materials Letters 309:131305. doi:10.1016/j.matlet.2021.131305.
  • Zhang, X. Q., Y. L. Cui, Y. Zhong, D. H. Wang, W. J. Tang, X. L. Wang, X. H. Xia, C. D. Gu, and J. P. Tu. 2019. Cobalt disulfide-modified cellular hierarchical porous carbon derived from bovine bone for application in high-performance lithium–sulfur batteries. Journal of Colloid and Interface Science 551:219–26. doi:10.1016/j.jcis.2019.04.079.
  • Zhang, K., L. Jin, J. Chen, X. Qian, Q. Hao, S. Zhao, B. Li, S. Pang, and X. Shen. 2024. Ketjen black@Ce-MOF derived KB@CeO2-C as separator coating for lithium sulfur batteries. Journal of Energy Storage 78:110006. doi:10.1016/j.est.2023.110006.
  • Zhang, K., X. Qian, L. Jin, Q. Hao, S. Zhao, B. Li, S. Pang, and X. Shen. 2023. Application of Sn-MOF-derived SnO2 and SnO2/CNTs composites in separator modification for lithium-sulfur batteries. Journal of Electroanalytical Chemistry 947:117782. doi:10.1016/j.jelechem.2023.117782.
  • Zhang, Q., Y. Wang, Z. W. Sen, Z. Fu, R. Zhang, and Y. Cui. 2015. Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Letters 15 (6):3780–86. doi:10.1021/acs.nanolett.5b00367.
  • Zha, C., D. Wu, Y. Zhao, J. Deng, J. Wu, R. Wu, M. Yang, L. Wang, and H. Chen. 2021. Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries. Journal of Energy Chemistry 52:163–69. doi:10.1016/j.jechem.2020.04.059.
  • Zhu, D., T. Long, B. Xu, Y. Zhao, H. Hong, R. Liu, F. Meng, and J. Liu. 2021. Recent advances in interlayer and separator engineering for lithium-sulfur batteries. Journal of Energy Chemistry 57:41–60. doi:10.1016/j.jechem.2020.08.039.
  • Zhu, Z., Y. Zeng, Z. Pei, D. Luan, X. Wang, and X. W. (. Lou. 2023. Bimetal-organic framework nanoboxes enable accelerated redox kinetics and polysulfide trapping for lithium-sulfur batteries. Angewandte Chemie 135 (31):e202305828. doi:10.1002/ange.202305828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.