55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hybrid biodiesel production from optimised novel ternary oil mixture (simplex lattice mixture design) using heterogeneous river shell catalyst

ORCID Icon, &
Pages 2973-2992 | Received 06 Dec 2023, Accepted 19 Jan 2024, Published online: 09 Feb 2024

References

  • Agnihotri, M., R. Chamola, U. Bhan, and S. Jain. 2024. Assessing and optimizing the efficacy of synthesized CaO-based nano-catalysts for biodiesel production. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 46 (1):872–87. doi:10.1080/15567036.2023.2292237.
  • Agu, C. M., K. A. Ani, P. O. Abiazieije, J. A. Omeje, J. C. Ekuma, U. E. Umelo, O. H. Omukwu, E. D. Nwankwo, and M. P. Chinedu. 2024. Biodiesel production from waste cat fish oil using heterogeneous catalyst from cat fish born: A viable waste management approach, and ANN modeling of biodiesel yield. Waste Management Bulletin 1 (4):172–81. doi:10.1016/j.wmb.2023.11.002.
  • Ashine, F., Z. Kiflie, S. V. Prabhu, B. Z. Tizazu, V. Varadharajan, M. Rajasimman, S.-W. Joo, Y. Vasseghian, and M. Jayakumar. 2023. Biodiesel production from Argemone mexicana oil using chicken eggshell derived CaO catalyst. Fuel 332:126166. doi:10.1016/j.fuel.2022.126166.
  • Azad, A. K., M. G. Rasul, M. M. K. Khan, S. C. Sharma, M. Mofijur, and M. M. K. Bhuiya. 2016. Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia. Renewable and Sustainable Energy Reviews 61:302–18. doi:10.1016/j.rser.2016.04.013.
  • Bora, P., L. J. Konwar, J. Boro, M. M. Phukan, D. Deka, and B. K. Konwar. 2014. Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel. Applied Energy 135:450–60. doi:10.1016/j.apenergy.2014.08.114.
  • Brahma, S., B. Basumatary, S. F. Basumatary, B. Das, S. Brahma, S. L. Rokhum, and S. Basumatary. 2023. Biodiesel production from quinary oil mixture using highly efficient Musa chinensis based heterogeneous catalyst. Fuel 336:127150. doi:10.1016/j.fuel.2022.127150.
  • Brahma, S., B. Nath, B. Basumatary, B. Das, P. Saikia, K. Patir, and S. Basumatary. 2022. Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances 10:100284. doi:10.1016/j.ceja.2022.100284.
  • Che Mat, S., M. Y. Idroas, Y. H. Teoh, and M. F. Hamid. 2019. Optimisation of viscosity and density of refined palm oil-melaleuca cajuputi oil binary blends using mixture design method. Renewable Energy 133:393–400. doi:10.1016/j.renene.2018.10.017.
  • Fadhil, A. B., A. W. Nayyef, and S. H. Sedeeq. 2020. Valorization of mixed radish seed oil and Prunus armeniaca L. oil as a promising feedstock for biodiesel production: Evaluation and analysis of biodiesels. Asia-Pacific Journal of Chemical Engineering 15 (1). doi: 10.1002/apj.2390.
  • Gupta, J., M. Agarwal, and A. K. Dalai. 2016. Optimization of biodiesel production from mixture of edible and nonedible vegetable oils. Biocatalysis and Agricultural Biotechnology 8:112–20. doi:10.1016/j.bcab.2016.08.014.
  • Harisha, P., B. N. Anil Kumar, S. R. Tilak, and C. Ganesh. 2021. Production and optimization of biodiesel from composite Pongamia oil, animal fat oil and waste cooking oil using RSM. Materials Today: Proceedings 47 (xxxx):4901–05. doi:10.1016/j.matpr.2021.06.322.
  • IEA. 2022. World energy outlook 2022, part of world energy outlook. www.iea.org/t&c/%0Ahttps://www.iea.org/reports/world-energy-outlook-2022
  • Jayakumar, M., K. Bizuneh Gebeyehu, L. Deso Abo, A. Wondimu Tadesse, B. Vivekanandan, V. Prabhu Sundramurthy, W. Bacha, V. Ashokkumar, and G. Baskar. 2023. A comprehensive outlook on topical processing methods for biofuel production and its thermal applications: Current advances, sustainability and challenges. Fuel 349:128690. doi:10.1016/j.fuel.2023.128690.
  • Karkal, S. S., A. S. Jamadar, and T. G. Kudre. 2024. Valorization of marine fishmeal industry oil as feedstock and calcined shrimp and crab shells as catalysts for production of biodiesels and evaluation of their fuel properties, engine combustion, performance and gas emission characteristics. Process Safety and Environmental Protection 182:443–55. doi:10.1016/j.psep.2023.12.008.
  • Karkal, S. S., D. R. Rathod, A. S. Jamadar, S. S. Mamatha, and T. G. Kudre. 2023. Production optimization, scale-up, and characterization of biodiesel from marine fishmeal plant oil using portunus sanguinolentus crab shell derived heterogeneous catalyst. Biocatalysis and Agricultural Biotechnology 47:102571. doi:10.1016/j.bcab.2022.102571.
  • Kumar, A., and S. Sharma. 2011. Potential non-edible oil resources as biodiesel feedstock: An Indian perspective. Renewable and Sustainable Energy Reviews 15 (4):1791–800. doi:10.1016/j.rser.2010.11.020.
  • Kumar, M., and M. P. Sharma. 2016. Selection of potential oils for biodiesel production. Renewable and Sustainable Energy Reviews 56:1129–38. doi:10.1016/j.rser.2015.12.032.
  • Kumar, S., M. K. Singhal, and M. P. Sharma. 2023. Improvement of oxidation stability and cold flow properties of biodiesel using mixed oil strategy. Waste and Biomass Valorization. doi:10.1007/s12649-023-02170-z.
  • Kusumo, F., T. M. I. Mahlia, A. H. Shamsuddin, A. R. Ahmad, A. S. Silitonga, S. Dharma, M. Mofijur, F. Ideris, H. C. Ong, R. Sebayang, et al. 2022. Optimisation of biodiesel production from mixed Sterculia foetida and rice bran oil. International Journal of Ambient Energy 43 (1):4380–90. doi:10.1080/01430750.2021.1888802.
  • Lesbani, A., P. Tamba, R. Mohadi, and F. Fahmariyanti. 2013. Preparation of calcium oxide From Achatina Fulica as catalyst for production of Biodiesel from waste cooking oil. Indonesian Journal of Chemistry 13 (2):176–80. doi:10.22146/ijc.21302.
  • Masera, K., and A. K. Hossain. 2023. Advancement of biodiesel fuel quality and NOx emission control techniques. Renewable and Sustainable Energy Reviews 178:113235. doi:10.1016/j.rser.2023.113235.
  • Mathew, G. M., D. Raina, V. Narisetty, V. Kumar, S. Saran, A. Pugazhendi, R. Sindhu, A. Pandey, and P. Binod. 2021. Recent advances in biodiesel production: Challenges and solutions. Science of the Total Environment 794:148751. doi:10.1016/j.scitotenv.2021.148751.
  • Mohebolkhames, E., M. Kazemeini, and S. Sadjadi. 2024. Utilization of Salmon fish bone wastes as a novel bio-based heterogeneous catalyst-support toward the production of biodiesel: Process optimizations and kinetics studies. Materials Chemistry and Physics 311:128522. doi:10.1016/j.matchemphys.2023.128522.
  • Mubofu, E. B. 2016. Castor oil as a potential renewable resource for the production of functional materials. Sustainable Chemical Processes 4 (1):11. doi:10.1186/s40508-016-0055-8.
  • Mujtaba, M. A., H. H. Masjuki, M. A. Kalam, H. C. Ong, M. Gul, M. Farooq, M. E. M. Soudagar, W. Ahmed, M. H. Harith, and M. N. A. M. Yusoff. 2020. Ultrasound-assisted process optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine - cuckoo search. Renewable Energy 158:202–14. doi:10.1016/j.renene.2020.05.158.
  • Neduvel Annal, U., A. Natarajan, and R. Sahadevan. 2022. Biodiesel production in a fixed bed reactor from Vernonia cinerea oil using calcined Pyrgostylus striatulus catalyst supported on activated carbon. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (4):9476–88. doi:10.1080/15567036.2022.2132322.
  • Niju, S., G. Vishnupriya, and M. Balajii. 2019. Process optimization of calophyllum inophyllum-waste cooking oil mixture for biodiesel production using donax deltoides shells as heterogeneous catalyst. Sustainable Environment Research 29 (1):18. doi:10.1186/s42834-019-0015-6.
  • Nouadjep, N. S., E. Nso, E. B. Gueguim Kana, and C. Kapseu. 2019. Simplex lattice mixture design application for biodiesel production: Formulation and characterization of hybrid oil as feedstock. Fuel 252:135–42. doi:10.1016/j.fuel.2019.04.088.
  • Nurhayati, L. Saputra, A. Awaluddin, and E. Kurniawan. 2021. Converting waste cooking oil to biodiesel catalyzed by NaOH-impregnated CaO derived from Cockle Shell (anadara granosa). Kinetics and Catalysis 62 (6):860–65. doi:10.1134/S0023158421070028.
  • Pitchaiah, S., D. Juchelková, R. Sathyamurthy, and A. E. Atabani. 2023. Prediction and performance optimisation of a DI CI engine fuelled diesel–bael biodiesel blends with DMC additive using RSM and ANN: Energy and exergy analysis. Energy Conversion and Management 292 (July):117386. doi:10.1016/j.enconman.2023.117386.
  • Razzaq, L., M. M. Abbas, S. Miran, S. Asghar, S. Nawaz, M. E. M. Soudagar, N. Shaukat, I. Veza, S. Khalil, A. Abdelrahman, et al. 2022. Response surface methodology and artificial neural networks-based yield optimization of biodiesel sourced from mixture of palm and cotton seed oil. Sustainability 14 (10):6130. doi:10.3390/su14106130.
  • Roschat, W., T. Siritanon, B. Yoosuk, and V. Promarak. 2016. Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy Conversion and Management 108:459–67. doi:10.1016/j.enconman.2015.11.036.
  • Saravanan, R., T. Sathish, Ü. Ağbulut, R. Sathyamurthy, P. Sharma, E. Linul, and M. Asif. 2024. Waste bull bone based reusable and biodegradable heterogeneous catalyst for alternate fuel production from WCO, and investigation of its usability as fuel substitute. Fuel 355:129436. doi:10.1016/j.fuel.2023.129436.
  • Saydut, A., S. Erdogan, A. B. Kafadar, C. Kaya, F. Aydin, and C. Hamamci. 2016. Process optimization for production of biodiesel from hazelnut oil, sunflower oil and their hybrid feedstock. Fuel 183:512–17. doi:10.1016/j.fuel.2016.06.114.
  • Sharma, D., and Y. P. Singla. 2013. Preliminary and pharmacological profile of Melia azedarach L.: An overview. Journal of Applied Pharmaceutical Science 3 (12):133–38. doi:10.7324/JAPS.2013.31224.
  • Srikanth, H. V., B. A. Praveena, G. L. Arunkumar, S. Balaji, N. Santhosh, K. Sridhar, and S. Bharath Kumar. 2023. Production optimisation of mixed oil (rubber seed oil–fish oil) feedstock using response surface methodology and artificial neural network. International Journal of Ambient Energy 44 (1):2336–46. doi:10.1080/01430750.2023.2236107.
  • Sun, X., S. Liu, S. Manickam, Y. Tao, J. Y. Yoon, and X. Xuan. 2023. Intensification of biodiesel production by hydrodynamic cavitation: A critical review. Renewable and Sustainable Energy Reviews 179:179. doi:10.1016/j.rser.2023.113277.
  • Tan, D., Y. Wu, J. Lv, J. Li, X. Ou, Y. Meng, G. Lan, Y. Chen, and Z. Zhang. 2023. Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology. Energy 263:125869. doi:10.1016/j.energy.2022.125869.
  • Vargas, E. M., L. Ospina, M. C. Neves, L. A. C. Tarelho, and M. I. Nunes. 2021. Optimization of FAME production from blends of waste cooking oil and refined palm oil using biomass fly ash as a catalyst. Renewable Energy 163:1637–47. doi:10.1016/j.renene.2020.10.030.
  • Vinayaka, A. S., B. Mahanty, E. R. Rene, and S. K. Behera. 2021. Biodiesel production by transesterification of a mixture of pongamia and neem oils. Biofuels 12 (2):187–95. doi:10.1080/17597269.2018.1464874.
  • Wu, T., Q. Shen, M. Xu, T. Peng, and X. Ou. 2018. Development and application of an energy use and CO2 emissions reduction evaluation model for China’s online car hailing services. Energy 154:298–307. doi:10.1016/j.energy.2018.04.130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.