397
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A CFD study on the start-up hydrodynamics of fluid catalytic cracking regenerator integrated with chemical looping combustion

ORCID Icon & ORCID Icon
Pages 2941-2956 | Received 05 Sep 2023, Accepted 24 Jan 2024, Published online: 07 Feb 2024

References

  • Almuttahar, A., and F. Taghipour. 2008. Computational fluid dynamics of high density circulating fluidized bed riser: Study of modeling parameters. Powder Technology 185 (1):11–23. doi:10.1016/j.powtec.2007.09.010.
  • Alobaid, F., N. Almohammed, M. M. Farid, J. May, P. Rößger, A. Richter, and B. Epple. 2022. Progress in cfd simulations of fluidized beds for chemical and energy process engineering. Progress in Energy and Combustion Science 91:100930. doi:10.1016/j.pecs.2021.100930.
  • Alzate Hernández, J. D. 2016. CFD simulation of an industrial FCC regenerator. MSc diss., Universidad Nacional De Colombia-Sede Medellin.
  • Amblard, B., R. Singh, E. Gbordzoe, and L. Raynal. 2017. Cfd modeling of the coke combustion in an industrial fcc regenerator. Chemical Engineering Science 170:731–742. doi:10.1016/j.ces.2016.12.055.
  • Azarnivand, A., Y. Behjat, and A. A. Safekordi. 2018. Cfd simulation of gas–solid flow patterns in a downscaled combustor-style fcc regenerator. Particuology 39:96–108. doi:10.1016/j.partic.2017.10.009.
  • Chang, J., G. Wang, X. Lan, J. Gao, and K. Zhang. 2013. Computational investigation of a turbulent fluidized-bed fcc regenerator. Industrial & Engineering Chemistry Research 52 (11):4000–4010. doi:10.1021/ie3013659.
  • Chang, J., J. Zhao, K. Zhang, and J. Gao. 2016. Hydrodynamic modeling of an industrial turbulent fluidized bed reactor with fcc particles. Powder Technology 304:134–142. doi:10.1016/j.powtec.2016.04.048.
  • Chew, J. W., W. C. Q. Lamarche, and R. A. Cocco. 2022. 100 years of scaling up fluidized bed and circulating fluidized bed reactors. Powder Technology 409:117813. doi:10.1016/j.powtec.2022.117813.
  • Erdoğan, A. 2023. A three-dimensional cfd study on multiphase flow in an fcc regenerator integrated with oxy-combustion. Journal of Applied Fluid Mechanics 17 (2):398–409.
  • Fluent, A. 2009. Ansys fluent 12.0 user’s guide. Ansys Inc 15317:1–2498.
  • Gao, J., X. Lan, Y. Fan, J. Chang, G. Wang, C. Lu, and C. Xu. 2009a. Cfd modeling and validation of the turbulent fluidized bed of fcc particles. AIChE journal 55 (7):1680–1694. doi:10.1002/aic.11824.
  • Gao, J., X. Lan, Y. Fan, J. Chang, G. Wang, C. Lu, and C. Xu. 2009b. Hydrodynamics of gas–solid fluidized bed of disparately sized binary particles. Chemical Engineering Science 64 (20):4302–4316. doi:10.1016/j.ces.2009.07.003.
  • Golgiyaz, S., M. F. Talu, M. Daşkın, and C. Onat. 2022. Estimation of excess air coefficient on coal combustion processes via gauss model and artificial neural network. Alexandria Engineering Journal 61 (2):1079–1089. doi:10.1016/j.aej.2021.06.022.
  • Güleç, F., A. Erdogan, P. T. Clough, and E. Lester. 2021. Investigation of the hydrodynamics in the regenerator of fluid catalytic cracking unit integrated by chemical looping combustion. Fuel Processing Technology 223:106998. doi:10.1016/j.fuproc.2021.106998.
  • Güleç, F., W. Meredith, and C. E. Snape. 2023. CO2 capture from fluid catalytic crackers via chemical looping combustion: Regeneration of coked catalysts with oxygen carriers. Journal of the Energy Institute 107:101187. doi:10.1016/j.joei.2023.101187.
  • Li, P., X. Lan, C. Xu, G. Wang, C. Lu, and J. Gao. 2009. Drag models for simulating gas–solid flow in the turbulent fluidization of fcc particles. Particuology 7 (4):269–277. doi:10.1016/j.partic.2009.03.010.
  • Schiller, L. N. A. 1933. A drag coefficient correlation. Zeit Ver Deutsch Ing 77:318–320.
  • Singh, R., and E. Gbordzoe. 2017. Modeling fcc spent catalyst regeneration with computational fluid dynamics. Powder Technology 316:560–568. doi:10.1016/j.powtec.2016.10.058.
  • Syamlal, M., and T. J. O’Brien. 1989. Computer simulation of bubbles in a fluidized bed. AichE Symp. Ser 85 (270): 22–31. Publ by AIChE.
  • Treese, S. A., D. S. Jones, and P. R. Pujadó. 2006. Handbook of petroleum processing. Switzerland: Springer. https://link.springer.com/referencework/10.1007/978-3-319-05545-9#about-this-book.
  • Tsuo, Y. P., and D. Gidaspow. 1990. Computation of flow patterns in circulating fluidized beds. AIChE journal 36 (6):885–896. doi:10.1002/aic.690360610.
  • Tu, Q., H. Wang, and R. Ocone. 2022. Application of three-dimensional full-loop cfd simulation in circulating fluidized bed combustion reactors–a review. Powder Technology 399:117181. doi:10.1016/j.powtec.2022.117181.
  • Wang, X., B. Jin, Y. Zhang, W. Zhong, and S. Yin. 2011. Multiphase computational fluid dynamics (cfd) modeling of chemical looping combustion using a cuo/al2o3 oxygen carrier: Effect of operating conditions on coal gas combustion. Energy & Fuels 25 (8):3815–3824. doi:10.1021/ef200403w.
  • Yang, Z., Y. Zhang, T. Liu, and A. Oloruntoba. 2021. Mp-pic simulation of the effects of spent catalyst distribution and horizontal baffle in an industrial fcc regenerator. Part ii: Effects on regenerator performance. Chemical Engineering Journal 421:129694. doi:10.1016/j.cej.2021.129694.
  • Yang, Z., Y. Zhang, A. Oloruntoba, and J. Yue. 2021. Mp-pic simulation of the effects of spent catalyst distribution and horizontal baffle in an industrial fcc regenerator. Part i: Effects on hydrodynamics. Chemical Engineering Journal 412:128634. doi:10.1016/j.cej.2021.128634.
  • Zimmermann, S., and F. Taghipour. 2005. Cfd modeling of the hydrodynamics and reaction kinetics of fcc fluidized-bed reactors. Industrial & Engineering Chemistry Research 44 (26):9818–9827.