66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Flame kinetic behavior of premixed hydrogen-air explosion in an obstructed channel

ORCID Icon, , , , &
Pages 3007-3022 | Received 10 Nov 2023, Accepted 29 Jan 2024, Published online: 11 Feb 2024

References

  • Bivol, G., S. Golovastov, and V. Golub. 2021. Effect of channel geometry and porous coverage on flame acceleration in hydrogen–air mixture. Process Safety and Environmental Protection 151:128–140. doi:10.1016/j.psep.2021.04.038.
  • Chen, Z., M. P. Burke, and Y. Ju. 2009. Effects of compression and stretch on the determination of laminar flame speeds using propagating spherical flames. Combustion Theory and Modelling 13 (2):343–64. doi:10.1080/13647830802632192.
  • Clanet, C., and G. Searby. 1996. On the “tulip flame” phenomenon. Combustion and Flame 105 (1–2):225–238. doi:10.1016/0010-2180(95)00195-6.
  • Drazin, P. G., and W. H. Reid. 2004. Hydrodynamic stability. Cambridge, UK: Cambridge university press. doi:10.1017/CBO9780511616938.
  • Emerson, B. L., D. R. Noble, and T. C. Lieuwen, 2014. Stability analysis of reacting wakes: The physical role of flame-shear layer offset. 52nd Aerospace Sciences Meeting, 0659.
  • Erhard, P., D. Etling, U. Muller, U. Riedel, K. Sreenivasan, and J. Warnatz. 2010. Prandtl-essentials of fluid mechanics. New York, USA: Springer Science & Business Media. doi:10.1007/978-1-4419-1564-1.
  • Gamezo, V. N., T. Ogawa, and E. S. Oran. 2008. Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing. Combustion and Flame 155 (1–2):302–315. doi:10.1016/j.combustflame.2008.06.004.
  • Goodwin, G., R. Houim, and E. Oran. 2016. Effect of decreasing blockage ratio on DDT in small channels with obstacles. Combustion and Flame 173:16–26. doi:10.1016/j.combustflame.2016.07.029.
  • Goodwin, G. B., and E. S. Oran. 2018. Premixed flame stability and transition to detonation in a supersonic combustor. Combustion and Flame 197:145–160. doi:10.1016/j.combustflame.2018.07.008.
  • Greenshields, C., and H. Weller. 2022. Notes on Computational Fluid Dynamics: General principles. Reading, UK: CFD Direct Ltd.
  • Hansen, O. R. 2020. Hydrogen infrastructure—efficient risk assessment and design optimization approach to ensure safe and practical solutions. Process Safety and Environmental Protection 143:164–176. doi:10.1016/j.psep.2020.06.028.
  • Javadi, M. 2020. Evaluating the performance of wall-modelled large-eddy simulation on unstructured grids.
  • Johansen, C. T., and G. Ciccarelli. 2009. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel. Combustion and Flame 156 (2):405–416. doi:10.1016/j.combustflame.2008.07.010.
  • Kundu, P. K., I. M. Cohen, and D. R. Dowling. 2015. Fluid mechanics. Elsevier Amsterdam: Academic press. doi:10.1016/C2012-0-00611-4.
  • Li, Y., M. Bi, B. Li, Y. Zhou, L. Huang, and W. Gao. 2018. Explosion hazard evaluation of renewable hydrogen/ammonia/air fuels. Energy 159:252–263. doi:10.1016/j.energy.2018.06.174.
  • Li, Q., X. Sun, S. Lu, Z. Zhang, X. Wang, S. Han, and C. Wang. 2018. Experimental study of flame propagation across a perforated plate. International Journal of Hydrogen Energy 43 (17):8524–8533. doi:10.1016/j.ijhydene.2018.03.079.
  • Molkov, V., 2000. Turbulence generated during vented gaseous deflagrations and scaling issue in explosion protection. Institution of chemical engineers symposium series. Institution of Chemical Engineers, 1999. 279–92.
  • Molkov, V., 2012. Fundamentals of hydrogen safety engineering. Bookboon. com, ISBN, 978-987.
  • Nguyen, T., C. Strebinger, G. Bogin Jr, and J. Brune. 2021. A 2D CFD model investigation of the impact of obstacles and turbulence model on methane flame propagation. Process Safety and Environmental Protection 146:95–107. doi:10.1016/j.psep.2020.08.023.
  • Nicoud, F., and F. Ducros. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 62 (3):183–200. doi:10.1023/A:1009995426001.
  • Pope, S. B. 2004. Ten Questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics 6:35. doi:10.1088/1367-2630/6/1/035.
  • Qin, Y., and X. Chen. 2021. Flame propagation of premixed hydrogen-air explosion in a closed duct with obstacles. International Journal of Hydrogen Energy 46 (2):2684–2701. doi:10.1016/j.ijhydene.2020.10.097.
  • Qin, Y., and X. Chen. 2022. Study on the dynamic process of in-duct hydrogen-air explosion flame propagation under different blocking rates. International Journal of Hydrogen Energy 47 (43):18857–18876. doi:10.1016/j.ijhydene.2022.04.004.
  • Qi, C., X. Yan, Y. Wang, Y. Ning, X. Yu, Y. Hou, X. Lv, J. Ding, E. Shi, and J. Yu. 2022. Flammability limits of combustible gases at elevated temperatures and pressures: Recent advances and future perspectives. Energy & Fuels 36 (21):12896–12916. doi:10.1021/acs.energyfuels.2c02567.
  • Reveillon, J., E. Franquet, C. Langrée, G. Lecocq, B. Duret, and F.-X. Demoulin. 2022. CFD simulation of premixed flames propagating in an obstacles network. Fuel 329:125266. doi:10.1016/j.fuel.2022.125266.
  • Rui, S., C. Wang, S. Guo, R. Jing, and Q. Li. 2021. Hydrogen-air explosion with concentration gradients in a cubic enclosure. Process Safety and Environmental Protection 151:141–150. doi:10.1016/j.psep.2021.05.003.
  • Shanbhogue, S., D. Plaks, and T. Lieuwen, 2007. The KH instability of reacting, acoustically excited bluff body shear layers. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, Ohio, USA. doi:10.2514/6.2007-5680.
  • Sheng, Z., G. Yang, W. Gao, S. Li, Q. Shen, and H. Sun. 2023a. Modeling of non-homogeneous premixed hydrogen-air flame acceleration and deflagration to detonation transition in an obstructed channel. International Journal of Hydrogen Energy 50:1209–22. doi:10.1016/j.ijhydene.2023.10.036.
  • Sheng, Z., G. Yang, W. Gao, S. Li, Q. Shen, and H. Sun. 2023b. Study on the dynamic process of premixed hydrogen-air deflagration flame propagating in a closed space with obstacles. Fuel 334:126542. doi:10.1016/j.fuel.2022.126542.
  • Sheng, Z., G. Yang, S. Li, Q. Shen, H. Sun, Z. Jiang, J. Liao, and H. Wang. 2022. Modeling of turbulent deflagration behaviors of premixed hydrogen-air in closed space with obstacles. Process Safety and Environmental Protection 161:506–519. doi:10.1016/j.psep.2022.03.044.
  • Shen, X., C. Zhang, G. Xiu, and H. Zhu. 2019. Evolution of premixed stoichiometric hydrogen/air flame in a closed duct. Energy 176:265–271. doi:10.1016/j.energy.2019.03.193.
  • Wang, C., L. Zhao, J. Qu, Y. Xiao, J. Deng, and C.-M. Shu. 2023. Minireview on the Leakage Ignition and flame propagation characteristics of hydrogen: Advances and perspectives 37: 5653–5666. Energy & Fuels. doi:10.1021/acs.energyfuels.2c03866.
  • Xiao, H., W. An, Q. Duan, and J. Sun. 2013. Dynamics of premixed hydrogen/air flame in a closed combustion vessel. International Journal of Hydrogen Energy 38 (29):12856–12864. doi:10.1016/j.ijhydene.2013.07.082.
  • Xiao, H., J. Sun, and P. Chen. 2014. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber. Journal of Hazardous Materials 268:132–139. doi:10.1016/j.jhazmat.2013.12.060.
  • Xiao, G., S. Wang, H. Mi, and F. Khan. 2022. Analysis of obstacle shape on gas explosion characteristics. Process Safety and Environmental Protection 161:78–87. doi:10.1016/j.psep.2022.03.019.
  • Yang, X., M. Yu, K. Zheng, P. Luan, and S. Han. 2020. An experimental study on premixed syngas/air flame propagating across an obstacle in closed duct. Fuel 267:117200. doi:10.1016/j.fuel.2020.117200.
  • Yue, M., H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel. 2021. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews 146:111180. doi:10.1016/j.rser.2021.111180.
  • Zheng, K., C. Song, X. Yang, J. Wu, J. Jiang, and Z. Xing. 2022. Effect of obstacle location on explosion dynamics of premixed H2/CO/air mixtures in a closed duct. Fuel 324:124703. doi:10.1016/j.fuel.2022.124703.
  • Zheng, K., M. Yu, L. Zheng, and X. Wen. 2018. Comparative study of the propagation of methane/air and hydrogen/air flames in a duct using large eddy simulation. Process Safety and Environmental Protection 120:45–56. doi:10.1016/j.psep.2018.08.025.
  • Zimont, V., W. Polifke, M. Bettelini, and W. Weisenstein. 1998. An efficient computational model for premixed turbulent combustion at high reynolds numbers based on a turbulent flame speed closure. Journal of Engineering for Gas Turbines and Power 120 (3):526–532. doi:10.1115/1.2818178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.