33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study of the effect of nickel foam synergistic CO2 on low hydrogen ratio methane explosion

, , , &
Pages 3309-3323 | Received 02 Jan 2024, Accepted 01 Feb 2024, Published online: 22 Feb 2024

References

  • Cao, X., J. Ren, M. Bi, Y. Zhou, and Y. Li. 2017. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist. Journal of Hazardous Materials 324:489–497. doi:10.1016/j.jhazmat.2016.11.017.
  • Chen, P., F. Huang, Y. Sun, and X. Chen. 2017. Effects of metal foam meshes on premixed methane-air flame propagation in the closed duct. Journal of Loss Prevention in the Process Industries 47:22–28. doi:10.1016/j.jlp.2017.02.015.
  • Chen, X., Z. Qi, H. Dai, S. Yin, S. He, Y. Zhang, X. Wang, and B. Yuan. 2018. Effect of metal mesh on the flame propagation characteristics of wheat starch dust. Journal of Loss Prevention in the Process Industries 55:107–12. doi:10.1016/j.jlp.2018.06.005.
  • Ciccarelli, G. 2012. Explosion propagation in inert porous media. Philosophical Transactions of the Royal Society A: Mathematical. Physical, and Engineering Sciences 370 (1960):647–67. doi:10.1098/rsta.2011.0346.
  • Duan, Y., S. Wang, Y. Yang, Y. Li, and K. Zheng. 2021. Experimental study on methane explosion characteristics with different types of porous media. Journal of Loss Prevention in the Process Industries 69:104370. doi:10.1016/j.jlp.2020.104370.
  • Fengxiao, W., J. Jinzhang, and T. Xiuyuan. 2022. Suppression of methane explosion in pipeline network by carbon dioxide-driven calcified montmorillonite powder. Arabian Journal Chemistry 15 (10):104126. doi:10.1016/j.arabjc.2022.104126.
  • Isaac, T. 2019. HyDeploy: the UK’s first hydrogen blending deployment project. Clean Energy 3 (2):114–25. doi:10.1093/ce/zkz006.
  • Li, H. M., G. X. Li, Z. Y. Sun, Z. H. Zhou, Y. Li, and Y. Yuan. 2016. Effect of dilution on laminar burning characteristics of H2/CO/CO2/air premixed flames with various hydrogen fractions. Experimental Thermal & Fluid Science 74:160–68. doi:10.1016/j.arabjc.2022.104126.
  • Li, J. F., Y. Su, H. Zhang, and B. Yu. 2021. Research progresses on pipeline transportation of hydrogen-blended natural gas. Natural Gas Industry 41:137–52.
  • Long, F., Y. Duan, S. Yu, H. Jia, Y. Bu, and J. Huang. 2022. Effect of porous materials on explosion characteristics of low ratio hydrogen/methane mixture in barrier tube. Journal of Loss Prevention in the Process Industries 80:104875. doi:10.1016/j.jlp.2022.104875.
  • Luo, Z., T. Wang, Z. Tian, F. Cheng, J. Deng, and Y. Zhang. 2014. Experimental study on the suppression of gas explosion using the gas–solid suppressant of CO2/ABC powder. Journal of Loss Prevention in the Process Industries 30:17–23. doi:10.1016/j.jlp.2014.04.006.
  • Ma, Q., Q. Zhang, L. Pang, Y. Huang, and J. Chen. 2014. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air. Journal of Loss Prevention in the Process Industries 27:65–73. doi:10.1016/j.jlp.2013.11.007.
  • Mitu, M., M. Prodan, V. Giurcan, D. Razus, and D. Oancea. 2016. Influence of inert gas addition on propagation indices of methane–air deflagrations. Process Safety and Environmental Protection 102:513–522. doi:10.1016/j.psep.2016.05.007.
  • Papalexandris, M. V. 2021. Attenuation of gaseous detonations by porous media of fine microstructure. Combustion and Flame 232:111518. doi:10.1016/j.combustflame.2021.111518.
  • Reitenbach, V., L. Ganzer, D. Albrecht, and B. Hagemann. 2015. Influence of added hydrogen on underground gas storage: A review of key issues. Environmental Earth Sciences 73 (11):6927–37. doi:10.1007/s12665-015-4176-2.
  • Sánchez, A. L., and F. A. Williams. 2016. Recent advances in understanding of flammability characteristics of hydrogen (vol 41, pg 1, 2014). Progress in Energy and Combustion Science 54:93–94. doi:10.1016/j.pecs.2016.04.001.
  • Shao, H., C. Wang, and H. Yu. 2020. Effect of copper foam on explosion suppression at different positions in the pipe. Powder Technology 360:695–703. doi:10.1016/j.powtec.2019.09.078.
  • Shi, H., Y. Lv, and G. B. Tan. 2022. Feasibility study on pipeline transportation of hydrogen-blended natural gas. Natural Gas Oil 40:23–31.
  • Tao, W., S. Yuhuai, Y. Yingying, F. Cheng, X. Ding, J. Qu, J. Deng, F. Nan, and Z. Luo. 2024. Experimental investigation and numerical analysis on the confined deflagration behavior of methane-air mixtures within the suppression of typical haloalkanes. Process Safety and Environmental Protection 183:87–98. DOI: 10.1016/j.psep.2024.01.002.
  • Wang, L., Y. Liang, Y. Hu, and W. Hu. 2020. Synergistic suppression effects of flame retardant, porous minerals and nitrogen on premixed methane/air explosion. Journal of Loss Prevention in the Process Industries 67:104263. doi:10.1016/j.jlp.2020.104263.
  • Wang, M., X. Wen, S. Zhang, F. Wang, Q. Zhu, R. Pan, and W. Ji. 2020. Effect of metal foam mesh on flame propagation of biomass-derived gas in a half-open duct. American Chemical Society Omega 5 (32):20643–20652. doi:10.1021/acsomega.0c03055.
  • Wang, Y., X. Meng, W. Ji, B. Pei, C. Lin, H. Feng, and L. Zheng. 2019. The inhibition effect of gas–solid two-phase inhibitors on methane explosion. Energies 12 (3):398. doi:10.3390/en12030398.
  • Wen, X., Z. Guo, F. Wang, R. Pan, Z. Liu, and X. Zhang. 2020. Experimental study on the quenching process of methane/air deflagration flame with porous media. Journal of Loss Prevention in the Process Industries 65:104121. doi:10.1016/j.jlp.2020.104121.
  • Wu, S. 2018. Experimental study on the Suppression of explosion Flame in pipelines with porous materials. Beijing Institute of Technology. doi:10.26948/d.cnki.gbjlu.2018.000425.
  • Yadav, V. K. 2018. Numerical and experimental investigation of hydrogen enrichment effect on the combustion characteristics of biogas. International Journal of Renewable Energy Research (IJRER) 8 (3):1269–80. doi:10.20508/ijrer.v8i3.7562.g7426.
  • Yang, H. N., Y. J. Lin, C. H. Liu, M. G. Chin, C. C. Wang, H. Y. Tsai, and J. R. Chen. 2019. Suppression of flame propagation in a long duct by inertia isolation with inert gases. Journal of Loss Prevention in the Process Industries 59:23–34. doi:10.1016/j.jlp.2019.03.002.
  • Yang, W., L. Zheng, C. Wang, X. Wang, H. Jin, and Y. Fu. 2021. Effect of ignition position and inert gas on hydrogen/air explosions. International Journal of Hydrogen Energy 46 (12):8820–8833. doi:10.1016/j.ijhydene.2020.12.078.
  • Yulong, D., W. Shuo, H. Sen, and W. Lin. 2020. Characteristics of gas explosion to diffusion combustion under porous materials. Explosion & Shock Waves 40 (9):095401-1-095401–9.
  • Zahedi, P., and K. Yousefi. 2014. Effects of pressure and carbon dioxide, hydrogen and nitrogen concentration on laminar burning velocities and NO formation of methane-air mixtures. Journal of Mechanical Science and Technology 28 (1):377–86. doi:10.1007/s12206-013-0970-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.