86
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of (2-(4-methylthiazol-5-yl) ethoxy)-substituted silicon phthalocyanine and novel green silver nanoparticles: DSSC targets

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3177-3193 | Received 27 Dec 2023, Accepted 05 Feb 2024, Published online: 22 Feb 2024

References

  • Acharya, T. R., M. Jang, G. J. Lee, and E. H. Choi. 2023. A comprehensive study on the synthesis, characteristics, and catalytic applications of submerged hydrogen-mixed argon plasma-synthesized silver nanoparticles. Current Applied Physics 56:36–46. doi:10.1016/j.cap.2023.09.003.
  • Acharyya, S., S. Sadhukhan, T. Panda, D. K. Ghosh, N. C. Mandal, A. Nandi, S. Bose, G. Das, S. Maity, P. Chaudhuri, et al. 2022. Dopant-free materials for carrier-selective passivating contact solar cells: A review. Surfaces and Interfaces 28:101687. doi:10.1016/j.surfin.2021.101687.
  • Adsersen, A., A. Kjølbye, O. Dall, and A. K. Jäger. 2007. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis Cava Schweigg. & Kort. Journal of Ethnopharmacology 113 (1):179–82. doi:10.1016/j.jep.2007.05.006.
  • Ağırtaş, M. S., D. Güngördü Solğun, Ü. Yildiko, and A. Özkartal. 2020. Design of novel substituted phthalocyanines; synthesis and fluorescence, DFT, photovoltaic properties. Turkish Journal of Chemistry 44 (6):1574–1586. doi:10.3906/kim-2007-40.
  • Ağırtaş, M. S., Ö. Ödemiş, D. Güngördü Solğun, A. A. Tanrıverdı, and A. Özkartal. 2023. Synthesis of silver nanoparticles formed by Chaerophyllum Macrospermum and eremurus spectabilis biomaterial and investigation of photovoltaic parameters by adding Silicon Phthalocyanine. Journal of Coordination Chemistry 76 (11–12):1471–84. doi:10.1080/00958972.2023.2239433.
  • Al-Sagur, H., S. Komathi, M. A. Khan, A. G. Gurek, and A. Hassan. 2017. A novel glucose sensor using lutetium phthalocyanine as redox mediator in reduced graphene oxide conducting polymer multifunctional hydrogel. Biosensors and Bioelectronics 92:638–45. doi:10.1016/j.bios.2016.10.038.
  • Arsyad, W. S., F. Cassandra, M. Asharuddin, S. Suere, L. O. A. N. Ramadhan, and R. Hidayat. 2022. Green synthesis of silver nanoparticles from anthocyanin extracts of purple cabbage (Brassica Oleracea Var Capitata) and its characteristics for Dye-Sensitized Solar Cells (DSSC) application. Journal of Physics, Conference Series 2274 (1):012001. doi:10.1088/1742-6596/2274/1/012001.
  • Aziz, T., Y. Sun, Z.-H. Wu, M. Haider, T. Y. Qu, A. Khan, C. Zhen, Q. Liu, H.-M. Cheng, and D.-M. Sun. 2021. A flexible nickel phthalocyanine resistive random access memory with multi-level data storage capability. Journal of Materials Science & Technology 86:151–57. doi:10.1016/j.jmst.2021.02.008.
  • Bolognesi, M., M. Prosa, M. Tessarolo, G. Donati, S. Toffanin, M. Muccini, and M. Seri. 2016. Impact of environmentally friendly processing on polymer solar cells: Performance, thermal stability and morphological study by imaging techniques. Solar Energy Materials & Solar Cells 155:436–45. doi:10.1016/j.solmat.2016.06.044.
  • Das, B., A. De, M. Das, S. Das, and A. Samanta. 2017. A new exploration of dregea volubilis flowers: Focusing on antioxidant and antidiabetic properties. South African Journal of Botany 109:16–24. doi:10.1016/j.sajb.2016.12.003.
  • de Souza, T. F. M., F. C. T. Antonio, P. Homem-de-Mello, and A. O. Ribeiro. 2020. Unsymmetrical zinc (II) phthalocyanine and zinc (II) naphthalocyanine with 2,3-dicyano-1,4-diphenylnaphthalene precursor. Dyes and Pigments 172:107824. doi:10.1016/j.dyepig.2019.107824.
  • Devi, H. S., M. A. Boda, M. A. Shah, S. Parveen, and A. H. Wani. 2019. Green synthesis of iron oxide nanoparticles using platanus orientalis leaf extract for antifungal activity. Green Processing and Synthesis 8 (1):38–45. doi:10.1515/gps-2017-0145.
  • Fadda, A. A., R. E. El-Mekawy, N. N. Soliman, A. M. Allam, and M. T. Abdelaal. 2018. Synthesis, characterization, antioxidant and antitumor evaluation of new phthalocyanines containing peripherally functionalized fused heterocyclic compounds. Dyes and Pigments 155:300–312. doi:10.1016/j.dyepig.2018.02.048.
  • Fareed, N., S. Nisa, Y. Bibi, A. Fareed, W. Ahmed, M. Sabir, S. Alam, A. Sajjad, S. Kumar, M. Hussain, et al. 2023. Green synthesized silver nanoparticles using carrot extract exhibited strong antibacterial activity against multidrug resistant bacteria. Journal of King Saud University - Science 35 (2):102477. doi:10.1016/j.jksus.2022.102477.
  • Garmaroudi, Z. A., M. R. Mohammadi, and M. Menon. 2016. Plasmonic effects of infiltrated silver nanoparticles inside TiO 2 film: Enhanced photovoltaic performance in DSSCs. Journal of the American Ceramic Society, American Ceramic Society 99 (1):167–73. doi:10.1111/jace.13923.
  • Giddaerappa, N. Manjunatha, S. M. Hojamberdiev, and L. K. Sannegowda. 2022. Nitrogen-rich palladium tetra amino-hippuric acid phthalocyanine complex and its hybrid composite with multi-walled carbon nanotubes for supercapacitor application. Journal of Energy Storage 50:104696. doi:10.1016/j.est.2022.104696.
  • Gounden, D., N. Nombona, and W. E. van Zyl. 2020. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coordination Chemistry Reviews 420:213359. doi:10.1016/j.ccr.2020.213359.
  • Hosseinnezhad, M., R. Jafari, and K. Gharanjig. 2017. Characterization of a green and environmentally friendly sensitizer for a low cost dye-sensitized solar cell. Opto-Electronics Review 25 (2):93–98. doi:10.1016/j.opelre.2017.04.007.
  • Jain, P. K., X. Huang, I. H. El-Sayed, and M. A. El-Sayed. 2008. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of Chemical Research 41 (12):1578–86. doi:10.1021/ar7002804.
  • Janas, K., E. Boniewska-Bernacka, G. Dyrda, and R. Słota. 2021. Porphyrin and phthalocyanine photosensitizers designed for targeted photodynamic therapy of colorectal cancer. Bioorganic & Medicinal Chemistry 30:115926. doi:10.1016/j.bmc.2020.115926.
  • John, A., A. Shaji, K. Velayudhannair, N. M. G. Krishnamoorthy, and G. Krishnamoorthy. 2021. Anti-bacterial and biocompatibility properties of green synthesized silver nanoparticles using parkia biglandulosa (Fabales: Fabaceae) leaf extract. Current Research in Green and Sustainable Chemistry 4:100112. doi:10.1016/j.crgsc.2021.100112.
  • Kataria, N., and V. K. Garg. 2018. Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: Regeneration and mechanism. Chemosphere 208:818–28. doi:10.1016/j.chemosphere.2018.06.022.
  • Keser Karaoglan, G., A. Hısır, Y. Erdag Maden, M. Ozbay Karakus¸, and A. Koca. 2022. Synthesis, characterization, electrochemical, spectroelectrochemical and dye-sensitized solar cell properties of phthalocyanines containing carboxylic acid anchoring groups as photosensitizer. Dyes and Pigments 204:110390. doi:10.1016/j.dyepig.2022.110390.
  • Keshipour, S., and A. Asghari. 2022. A review on hydrogen generation by phthalocyanines. International Journal of Hydrogen Energy 47 (26):12865–12881. doi:10.1016/j.ijhydene.2022.02.058.
  • Klocek, J., K. Henkel, K. Kolanek, E. Zschech, and D. Schmeißer. 2012. Spectroscopic and capacitance–voltage characterization of thin aminopropylmethoxysilane films doped with copper phthalocyanine, tris(dimethylvinylsilyloxy)–POSS and fullerene cages. Applied Surface Science 258 (10):4213–21. doi:10.1016/j.apsusc.2011.12.004.
  • Kuzmina, E. A., T. V. Dubinina, P. N. Vasilevsky, M. S. Saveliev, A. Y. Gerasimenko, N. E. Borisova, and L. G. Tomilova. 2021. Novel octabromo-substituted lanthanide(III) phthalocyanines – Prospective compounds for nonlinear optics. Dyes and Pigments 185:108871. doi:10.1016/j.dyepig.2020.108871.
  • Li, X., W. Yang, J. Deng, and Y. Lin. 2023. Surface plasmon resonance effects of silver nanoparticles in graphene-based dye-sensitized solar cells. Frontiers in Materials 10:1137771. doi:10.3389/fmats.2023.1137771.
  • Lim, E. L., C. C. Yap, M. H. H. Jumali, M. A. M. Teridi, and C. H. The. 2018. A mini review: Can graphene Be a novel material for perovskite solar cell applications? Nano-Micro Letters 10 (2):27. doi:10.1007/s40820-017-0182-0.
  • Luan, X., and Y. Wang. 2014. Plasmon-enhanced performance of dye-sensitized solar cells based on electrodeposited ag nanoparticles. Journal of Materials Science & Technology 30 (1):1–7. doi:10.1016/j.jmst.2013.09.007.
  • Mohtasham, J. 2015. Review article-renewable energies. Energy Procedia 74:1289–97. doi:10.1016/j.egypro.2015.07.774.
  • Mustafa, S. M., A. A. Barzinjy, and A. H. Hamad. 2023. An environmentally friendly green synthesis of Co2+ and Mn2+ ion doped ZnO nanoparticles to improve solar cell efficiency. Journal of Environmental Chemical Engineering 11 (2):109514. doi:10.1016/j.jece.2023.109514.
  • Nazeri, M. T., S. Javanbakht, M. Nabi, and A. Shaabani. 2022. Copper phthalocyanine-conjugated pectin via the ugi four-component reaction: An efficient catalyst for CO2 fixation. Carbohydrate Polymers 283:119144. doi:10.1016/j.carbpol.2022.119144.
  • Openda, Y. I., B. Babu, and T. Nyokong. 2022. Novel cationic-chalcone phthalocyanines for photodynamic therapy eradication of S. aureus and E. coli bacterial biofilms and MCF-7 breast cancer. Photodiagnosis and Photodynamic Therapy 38:102863. doi:10.1016/j.pdpdt.2022.102863.
  • Prathna, T. C., N. Chandrasekaran, A. M. Raichur, and A. Mukherjee. 2011. Biomimetic synthesis of silver nanoparticles by Citrus Limon (Lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces 82 (1):152–59. doi:10.1016/j.colsurfb.2010.08.036.
  • Ridhi, R., G. S. S. Saini, and S. K. Tripathi. 2023. Study of sensing mechanism of heterocyclic hazardous vapors with metal phthalocyanines. Dyes and Pigments 216:111328. doi:10.1016/j.dyepig.2023.111328.
  • Saadmim, F., T. Forhad, A. Sikder, W. Ghann, M. Ali, M. Sitther, V. Ahammad, A. J. S. Subhan, and A. Md. 2020. Enhancing the performance of dye sensitized solar cells using silver nanoparticles modified photoanode. Molecules 25 (17):4021. doi:10.3390/molecules25174021.
  • Sadeghi, B., A. Rostami, and S. S. Momeni. 2015. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia Atlantica and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 134:326–32. doi:10.1016/j.saa.2014.05.078.
  • Saravanan, S., R. Kato, M. Balamurugan, S. Kaushik, and T. Soga. 2017. Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver nanoparticles. Journal of Science: Advanced Materials & Devices 2 (4):418–24. doi:10.1016/j.jsamd.2017.10.004.
  • Selvapriyaa, R., T. Abhijithb, V. Ragavendranc, V. Sasirekhaa, V. S. Reddyb, J. M. Pearced, and J. Mayandic. 2022. Impact of coupled plasmonic effect with multishaped silver nanoparticles on efficiency of dye sensitized solar cells. Journal of Alloys and Compounds 894:162339. doi:10.1016/j.jallcom.2021.162339.
  • Sharif, A. M., M. Ashrafuzzaman, A. Kalam, A. G. Al-Sehemi, P. Yadav, B. Tripathi, M. Dubey, and G. Du. 2023. Green synthesis of pristine and Ag-doped TiO2 and investigation of their performance as photoanodes in dye-sensitized solar cells. Materials 16 (17):5731. doi:10.3390/ma16175731.
  • Sivakumar, S., M. Subban, R. Chinnasamy, K. Chinnaperumal, I. Nakouti, M. A. El-Sheikh, and J. P. Shaik. 2023. Green synthesized silver nanoparticles using andrographis macrobotrys nees leaf extract and its potential to antibacterial, antioxidant, anti-inflammatory and lung cancer cells cytotoxicity effects. Inorganic Chemistry Communications 153:110787. doi:10.1016/j.inoche.2023.110787.
  • Sowmyya, T., and G. V. Lakshmi. 2018. Spectroscopic Investigation on catalytic and bactericidal properties of biogenic silver nanoparticles synthesized using soymida febrifuga aqueous stem bark extract. Journal of Environmental Chemical Engineering 6 (3):3590–601. doi:10.1016/j.jece.2017.01.045.
  • Sridevi, B. R., P. A. Hoskeri, and C. M. Joseph. 2021. Effect of annealing on the optical, structural and electrochromic properties of vacuum evaporated manganese phthalocyanine thin films. Thin Solid Films 723:138584. doi:10.1016/j.tsf.2021.138584.
  • Subramaniam, S., S. Kumarasamy, M. Narayanan, M. Ranganathan, T. Rathinavel, A. Chinnathambi, T. A. Alahmadi, I. Karuppusamy, A. Pugazhendhi, and K. Whangchai. 2022. Spectral and structure characterization of Ferula Assafoetida fabricated silver nanoparticles and evaluation of its cytotoxic, and photocatalytic competence. Environmental Research 204:111987. doi:10.1016/j.envres.2021.111987.
  • Tarannum, N., D. Divya, and Y. K. Gautam. 2019. Facile green synthesis and applications of silver nanoparticles: A state-of-the-art review. RSC Advances 9 (60):34926–48. doi:10.1039/C9RA04164H.
  • Yakan, H., M. S. Çavuş, E. Güzel, B. S. Arslan, T. Bakır, and H. Muğlu. 2020. Phthalocyanines including 2-mercaptobenzimidazole analogs: Synthesis, spectroscopic characteristics, quantum-chemical studies on the relationship between electronic and antioxidant properties. Journal of Molecular Structure 1202:127259. doi:10.1016/j.molstruc.2019.127259.
  • Zheng, B.-D., S.-L. Li, Z.-L. Huang, L. Zhang, H. Liu, B.-Y. Zheng, M.-R. Ke, and J.-D. Huang. 2020. A non-aggregated zinc(II) phthalocyanine with hexadeca cations for antitumor and antibacterial photodynamic therapies. Journal of Photochemistry & Photobiology, B: Biology 213:112086. doi:10.1016/j.jphotobiol.2020.112086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.