32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Kinetic analysis and mathematical modeling of low-rank coal drying by using swirl fluidized bed dryer on varied angles of guide vane and temperatures

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3263-3277 | Received 21 Jul 2023, Accepted 07 Feb 2024, Published online: 22 Feb 2024

References

  • Adabi, M. E., S. Minaei, A. Motavalli, A. Taghizadeh, and M. Azadbakht. 2013. Energy consumption, effective moisture diffusion and activation energy in drying of thyme leaves (part II). International Journal of Agronomy and Plant Production 4 (9):2404–12. doi:10.1016/j.nifoj.2015.04.012.
  • Adeyemi, I., N. Kharoua, L. Khezzar, M. Meribout, and K. Alhammadi. 2022. Review of confined swirling flows and bluff body impacts on flow and heat transfer characteristics. Chemical Engineering Research & Design 187:359–86. doi:10.1016/j.cherd.2022.09.010.
  • Aghbashlo, M., M. H. Kianmehr, and A. Arabhosseini. 2010. Modelling of thin-layer drying of apple slices in a semi-industrial continuous band dryer. International Journal of Food Engineering 6 (4):article 1. doi:10.2202/1556-3758.1922.
  • Batcha, M. F. M., and V. R. Raghavan. 2011. Experimental studies on a swirling fluidized bed with annular distributor. Journal of Applied Sciences 11 (11):1980–86. doi:10.3923/jas.2011.1980.1986.
  • Baysal, T., N. Ozbalta, S. Gokbulut, B. Capar, O. Tastan, and G. Gurlek. 2015. Investigation of effects of various drying methods on the quality characteristics of apple slices and energy efficiency. Journal of Thermal Science and Technology 35 (1):135–44.
  • Dejahang, T. 2015. Low-temperature fluidized bed coal drying: Experiment, analysis, and simulation. Master Theses, University of Alberta.
  • De Wilde, J. 2014. Gas-solid fluidized beds in vortex chambers. Chemical Engineering and Processing: Process Intensification 85:256–90. doi:10.1016/j.cep.2014.08.013.
  • Diamante, L. M., and P. A. Munro. 1991. Mathematical modeling of hot air drying of sweet potato slices. International Journal of Food Science & Technology 26 (1):99–109. doi:10.1111/j.1365-2621.1991.tb01145.x.
  • Dincer, I., A. Midilli, and H. Kucuk. 2014. Progress in exergy, energy, and the environment. Chapter63. doi:10.1007/978-3-319-04681-5.
  • Esdm.go.id. 2021. esdm.go.id. https://www.esdm.go.id/id/media-center/arsip-berita/cadangan-batubara-masih-3884-miliar-ton-teknologi-bersih-pengelolaannya-terus-didorong. (InBahasa).
  • Ganesan, P., M. Thirugnanasambandam, S. Rajakarunakaran, and D. Devaraj. 2015. Specific energy consumption and CO2 emission reduction analysis in a textile industry. International Journal of Green Energy 12 (7):685–93. doi:10.1080/15435075.2013.829479.
  • Gunhan, T., V. Demir, E. Hancioglu, and A. Hepbasli. 2005. Mathematical modeling of drying of bay leaves. Energy Conversion and Management 46 (11–12):1667–79. doi:10.1016/j.enconman.2004.10.001.
  • Hashim, N., O. Daniel, and E. Rahaman. 2014. A preliminary study: kinetic model of drying process of pumpkins (Cucurbita moschata) in a convective hot air dryer. Agriculture and Agricultural Science Procedia 2:345–52. doi:10.1016/j.aaspro.2014.11.048.
  • Inyang, U. E., I. O. Oboh, and B. R. Etuk. 2018. Kinetic models for drying techniques—food materials. Advances in Chemical Engineering and Science 8 (2):27–48. doi:10.4236/aces.2018.82003.
  • Jindarat, W., P. Rattanadecho, and S. Vongpradubchai. 2011. Analysis of energy consumption in microwave and convective drying process of multi-layered porous material inside a rectangular wave guide. Experimental Thermal and Fluid Science 35 (4):728–37. doi:10.1016/j.expthermflusci.2010.11.008.
  • Karacabey, E. 2016. Evaluation of two fitting methods applied for thin-layer drying of cape gooseberry fruits. Brazilian Archives of Biology and Technology 59:1–10. doi:10.1590/1678-4324-2016160470.
  • Kunii, D., and O. Levenspiel. 1991. Fluidization engineering. 2nd ed. USA: Butterworth-Heinemann,
  • Lawrence, A., P. Thollander, M. Andrei, and M. Karlsson. 2019. Specific energy consumption/use (SEC) in energy management for improving energy efficiency in industry: Meaning, usage and differences. Energies 12 (2):1–22. doi:10.3390/en12020247.
  • Li, Z., C. Liu, Z. Chen, J. Qian, W. Zhao, and Q. Zhu. 2009. Analysis of coals and biomass pyrolysis using the distributed activation energy model. Bioresource Technology 100 (2):948–52. doi:10.1016/j.biortech.2008.07.032.
  • Minea, V. 2013. Drying heat pumps-part II: Agro-food, biological, and wood products. International Journal of Refrigeration 36 (3):659–73. doi:10.1016/j.ijrefrig.2012.11.026.
  • Mujumdar, A. S. 2014. Handbook of industrial drying. doi:10.1201/b17208.
  • Özbey, M., and M. S. Söylemez. 2005. Effect of swirling flow on fluidized bed drying of wheat grains. Energy Conversion and Management 46 (9–10):1495–512. doi:10.1016/j.enconman.2004.08.005.
  • Pawlak–Kruczek, H., M. Czerep, L. Niedzwiecki, E. Karampinis, I. Violidakis, I. Avagianos, and P. Grammelis. 2019. Drying of lignite of various origins in a pilot scale toroidal fluidized bed dryer using low quality heat. Energies 12 (7):1191. doi:10.3390/en12071191.
  • Pinto, T. C. S., A. S. Souza, J. N. M. Batista, A. M. Sarkis, L. S. L. Filho, T. F. Padua, and R. Bettega. 2020. Characterization and drying kinetics of iron ore pellet feed and sinter feed. Drying Technology 39 (10):1359–70. doi:10.1080/07373937.2020.1747073.
  • Prasertsan, S., and P. Saen-Saby. 1998. Heat pump drying of agricultural materials. Drying Technology 16 (1–2):235–50. doi:10.1080/07373939808917401.
  • Riveros-Gomez, M., Y. Baldan, C. Roman, P. Fabani, G. Mazza, and R. Rodríguez. 2022. Drying and rehydration kinetics of peeled and unpeeled green apple slices (granny smith CV). Journal of Environmental Science and Health, Part B, Pesticides, Food Contaminants, and Agricultural Wastes 57 (10):835–847. doi:10.1080/03601234.2022.2126246.
  • Rong, L. K., B. Song, W. Z. Yin, C. H. Bai, and M. Chu. 2017. Drying behaviors of low-rank coal under negative pressure: Kinetics and model. Drying Technology 35 (2):173–81. doi:10.1080/07373937.2016.1164712.
  • Salazar-Hincapié, A., A. Delgado-Mejía, A. F. Romero-Maya, and E. Duque-Grisales. 2020. Experimental assessment of the thermal performance of a heat pump dryer system based on the variations in compressor discharge pressure on oregano drying. Energies 13 (23):1–14. doi:10.3390/en13236333.
  • Seibold, F., and B. Weigand. 2021. Numerical analysis of the flow pattern in convergent vortex tubes for cyclone cooling applications. International Journal of Heat and Fluid Flow 90:108806. doi:10.1016/j.ijheatfluidflow.2021.108806.
  • Selvi, K. Ç. 2020. Investigating the influence of infrared drying method on linden (Tilia platyphyllos scop.) leaves: Kinetics, color, projected area, modeling, total phenolic, and flavonoid content. Plants 9 (7):916–17. doi:10.3390/plants9070916.
  • Sheikholeslami, M., M. Gorji-Bandpy, and D. D. Ganji. 2015. Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renewable and Sustainable Energy Reviews 49:444–69. doi:10.1016/j.rser.2015.04.113.
  • Shu, J., V. I. Lakshmanan, and C. E. Dodson. 2000. Hydrodynamic study of a toroidal fluidized bed reactor. Chemical Engineering and Processing: Process Intensification 39 (6):499–506. doi:10.1016/S0255-2701(00)00097-0.
  • Simanjuntak, M. E., Prabowo, D., Ichsani, and W. A. Widodo. 2016a. Experimental study on the effect of temperature and fluidization velocity on coal swirl fluidized bed drying with 100 angles of blade inclination. ARPN Journal of Engineering & Applied Sciences 11 (21):12499–505.
  • Simanjuntak, M. E., Prabowo, and W. A. Widodo. 2016b. Transient 3D modeling on swirl fluidized bed coal drying: The effect of different angles of guide vane. JP Journal of Heat and Mass Transfer 13 (4):497–510. doi:10.17654/HM013040497.
  • Simanjuntak, M. E., Prabowo, W. A. Widodo, Sutrisno, and M. B. H. Sitorus. 2019. Experimental and numerical study of coal swirl fluidized bed drying on 10° angle of guide vane. Journal of Mechanical Science and Technology 33 (11):5499–505. doi:10.1007/s12206-019-1042-2.
  • Siqueira, V. C., O. Resende, and T. H. Chaves. 2013. Mathematical modelling of the drying of jatropha fruit: An empirical comparison. Revista Ciencia Agronomica 44 (2):278–85. doi:10.1590/S1806-66902013000200009.
  • Sozzi, A., M. Zambon, G. Mazza, and D. Salvatori. 2021. Fluidized bed drying of blackberry wastes: Drying kinetics, particle characterization and nutritional value of the obtained granular solids. Powder Technology 385:37–49. doi:10.1016/j.powtec.2021.02.058.
  • Statistic of Electricity. 2020. Statistik Ketenagalistrikan Tahun 2020. Sekretariat Direktorat Jenderal Ketenagalistrikan. (In Bahasa).
  • Stokie, D., M. W. Woo, and S. Bhattacharya. 2019. Attrition of Victorian brown coal during drying in a fluidized bed. Drying Technology: An International Journal Technology 34 (7):793–801. doi:10.1080/07373937.2015.1080723.
  • Sundaram, P., and P. Sudhakar. 2016. Experimental performance investigation of swirling flow enhancement on fluidized bed dryer. ARPN Journal of Engineering & Applied Sciences 11 (21):12529–33.
  • Triratanasirichai, K., W. Pirompugd, and W. Dongbang. 2011. Mathematical modeling of drying characteristics of chillies in a rotating fluidized bed technique. American Journal of Applied Sciences 8 (10):979–83. doi:10.3844/ajassp.2011.979.983.
  • Wen, Y., J. Liao, X. Liu, F. Wei, and L. Chang. 2017. Removal behaviors of moisture in raw lignite and moisturized coal and their dewatering kinetics analysis. Drying Technology 35 (1):88–96. doi:10.1080/07373937.2016.1160246.
  • Xu, L., T. Yan, Y. Sun, L. Xi, J. Gao, Y. Li, and J. Li. 2021. Flow and heat transfer characteristics of a swirling impinging jet issuing from a threaded nozzle. Case Studies in Thermal Engineering 25:100970. doi:10.1016/j.csite.2021.100970.
  • Zhao, P., C. Liu, W. Qu, Z. He, J. Gao, L. Jia, S. Ji, and R. Ruan. 2019. Effect of temperature and microwave power levels on microwave drying kinetics of zhaotong lignite. Processes 7 (2):74. doi:10.3390/pr7020074.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.