44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the effects of different finned absorbers with swirl flow on the performance of solar air heater

ORCID Icon, , ORCID Icon &
Pages 3245-3262 | Received 08 Nov 2023, Accepted 08 Feb 2024, Published online: 22 Feb 2024

References

  • Abdullah, A., Y. El-Samadony, and Z. Omara. 2017. Performance evaluation of plastic solar air heater with different cross sectional configuration. Applied Thermal Engineering 121:218–223. doi:10.1016/j.applthermaleng.2017.04.067.
  • Abo-Elfadl, S., M. S. Yousef, M. El-Dosoky, and H. Hassan. 2021. Energy, exergy, and economic analysis of tubular solar air heater with porous material: An experimental study. Applied Thermal Engineering 196:117294. doi:10.1016/j.applthermaleng.2021.117294.
  • Arunkumar, H., S. Kumar, and K. V. Karanth. 2020. Analysis of a solar air heater for augmented thermohydraulic performance using helicoidal spring shaped fins-A numerical study. Renewable Energy 160:297–311. doi:10.1016/j.renene.2020.06.098.
  • Azad, R., S. Bhuvad, and A. Lanjewar. 2021. Study of solar air heater with discrete arc ribs geometry: Experimental and numerical approach. International Journal of Thermal Sciences 167:107013. doi:10.1016/j.ijthermalsci.2021.107013.
  • Bahrehmand, D., M. Ameri, and M. Gholampour. 2015. Energy and exergy analysis of different solar air collector systems with forced convection. Renewable Energy 83:1119–1130. doi:10.1016/j.renene.2015.03.009.
  • Biegger, C., Y. Rao, and B. Weigand. 2018. Flow and heat transfer measurements in swirl tubes with one and multiple tangential inlet jets for internal gas turbine blade cooling. International Journal of Heat and Fluid Flow 73:174–187. doi:10.1016/j.ijheatfluidflow.2018.07.011.
  • Cengel, Y. A., A. J. Ghajar, and M. Kanoglu. 2011. Heat and mass transfer: Fundamentals and applications. New York, NY: McGraw-Hill Education.
  • Chand, S., P. Chand, and H. Kumar Ghritlahre. 2022. Thermal performance enhancement of solar air heater using louvered fins collector. Solar Energy 239:10–24. doi:10.1016/j.solener.2022.04.046.
  • Daliran, A., and Y. Ajabshirchi. 2018. Theoretical and experimental research on effect of fins attachment on operating parameters and thermal efficiency of solar air collector. Information Processing in Agriculture 5 (4):411–421. doi:10.1016/j.inpa.2018.07.004.
  • El-Said, E. M., M. Abou Al-Sood, E. Elsharkawy, and G. B. Abdelaziz. 2022. Tubular solar air heater using finned semi-cylindrical absorber plate with swirl flow: Experimental investigation. Solar Energy 236:879–97. doi:10.1016/j.solener.2022.03.054.
  • Eswaramoorthy, M. 2014. A comparative experimental study on flat and V groove receiver plates of a solar air heater for drying applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (1):68–75. doi:10.1080/15567036.2011.580322.
  • Ghritlahre, H. K., M. Verma, J. S. Parihar, D. S. Mondloe, and S. Agrawal. 2022. A detailed review of various types of solar air heaters performance. Solar Energy 237:173–195. doi:10.1016/j.solener.2022.03.042.
  • Hassan, H., S. Abo-Elfadl, and M. El-Dosoky. 2020. An experimental investigation of the performance of new design of solar air heater (tubular). Renewable Energy 151:1055–1066. doi:10.1016/j.renene.2019.11.112.
  • Hegde, A. K., P. Raghuvir, and K. V. Karanth. 2023. Performance augmentation of solar air heaters: A comprehensive analysis. Solar Energy 253:527–53. doi:10.1016/j.solener.2023.01.031.
  • Holman, J. P. 2012. Experimental methods for engineers. McGraw Hill: New York, United States.
  • Jin, R., H. Zheng, X. Ma, and Y. Zhao. 2020. Performance investigation of integrated concentrating solar air heater with curved fresnel lens as the cover. Energy 194:116808. doi:10.1016/j.energy.2019.116808.
  • Jovani, M., M. Khoshvaght-Aliabadi, and M. Rashidi. 2023. Effects of vertical coil springs on the performance of solar air heaters: Experimental study. Applied Thermal Engineering 230:120701. doi:10.1016/j.applthermaleng.2023.120701.
  • Khanlari, A., A. Sözen, A. D. Tuncer, F. Afshari, E. Y. Gürbüz, and Y. C. Bilge. 2021. Numerical and experimental analysis of longitudinal tubular solar air heaters made from plastic and metal waste materials. Heat Transfer Research 52 (10):19–45. doi:10.1615/HeatTransRes.2021038204.
  • Koşan, M. 2022. Performance analysis of an infrared film assisted solar air heater for drying applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (3):8146–8160. doi:10.1080/15567036.2022.2120577.
  • Kummitha, O. R., D. R. Prabhakara Reddy, and A. Deevi Reddy. 2023. Numerical analysis of the effectiveness of a unique roughened surface solar air heater. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (1):2330–2345. doi:10.1080/15567036.2023.2187099.
  • Marzouk, S. A., M. M. Abou Al-Sood, E. M. S. El-Said, M. M. Younes, and M. K. El-Fakharany. 2023. Evaluating the effects of bifurcation angle on the performance of a novel heat exchanger based on contractual theory. Renewable Energy 219:119463. doi:10.1016/j.renene.2023.119463.
  • Marzouk, S. A., M. K. El-Fakharany, and F. B. Baz. 2022. Heat transfer performance of particle solar receiver: numerical study. Heat Transfer Research 53 (13):1–19. doi:10.1615/HeatTransRes.2022041384.
  • Qader, B. S., E. E. Supeni, M. K. A. Ariffin, and A. R. A. Talib. 2019. Numerical investigation of flow through inclined fins under the absorber plate of solar air heater. Renewable Energy 141:468–481. doi:10.1016/j.renene.2019.04.024.
  • Rahmani, E., T. Moradi, A. Fattahi, M. Delpisheh, N. Karimi, F. Ommi, and Z. Saboohi. 2021. Numerical simulation of a solar air heater equipped with wavy and raccoon-shaped fins: The effect of fins’ height. Sustainable Energy Technologies and Assessments 45:101227. doi:10.1016/j.seta.2021.101227.
  • Saravanan, A., M. Murugan, M. S. Reddy, P. S. Ranjit, P. V. Elumalai, P. Kumar, and S. R. Sree. 2021. Thermo-hydraulic performance of a solar air heater with staggered C-shape finned absorber plate. International Journal of Thermal Sciences 168:107068. doi:10.1016/j.ijthermalsci.2021.107068.
  • Sharma, S., R. Singh, and B. Bhushan. 2021. CFD based thermal efficiency of square shape protruded roughened absorber plate for solar air heater. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–22. doi:10.1080/15567036.2021.1908460.
  • Shetty, S. P., N. Madhwesh, and K. Vasudeva Karanth. 2021. Numerical analysis of a solar air heater with circular perforated absorber plate. Solar Energy 215:416–433. doi:10.1016/j.solener.2020.12.053.
  • Singh, I., and S. Vardhan. 2021. Experimental investigation of an evacuated tube collector solar air heater with helical inserts. Renewable Energy 163:1963–1972. doi:10.1016/j.renene.2020.10.114.
  • Wang, P.-Y., S.-F. Li, and Z.-H. Liu. 2015. Collecting performance of an evacuated tubular solar high-temperature air heater with concentric tube heat exchanger. Energy Conversion and Management 106:1166–1173. doi:10.1016/j.enconman.2015.10.058.
  • Wenceslas, K. Y., and T. Ghislain. 2018. Experimental validation of exergy optimization of a flat-plate solar collector in a thermosyphon solar water heater. Arabian Journal for Science and Engineering 44 (3):2535–49. doi:10.1007/s13369-018-3227-x.
  • Yadav, A. S., and J. L. Bhagoria. 2013. Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach. Renewable and Sustainable Energy Reviews 23:60–79. doi:10.1016/j.rser.2013.02.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.